

mosysfoc - system interface for FOC

Product Specification

FUNCTION

System registers and interfaces for motor Field Oriented Control (FOC).

VHDL File

mosysfoc.vhd

Applicable Devices

Spartan3ADSP, Spartan6, 7-Family, UltraScale+

Xilinx primitive used

DSP48A/A1/E1 RAMB16_S18_S18

Sub modules used motorfoc.vhd

Execution time

Introduction

This module is an interface toward the system registers of the motorfoc (motor Field Oriented Control) module. It implements the addressing of the registers and the read and write process.

Product Specification

PARAMETERS

Parameter	Туре	Values	Default	Description			
C_FAMILY	string	spartan3adsp spartan6 artix7 kintex7 virtex7 zynq	zynq	Xilinx FPGA Family name			
			erter analog inputs				
C_INV_IN_MAP[11:0]	Std_logic_v ector	0x0000xFFF	0x083	Bit map enabled input channels: 0=IPHS_A 1=IPHS_B 2=IPHS_C 3=IBUS_X 4=VPHS_A 5=VPHS_A 6=VPHS_C 7=VBUS_X 8=VPHS_N			
C_INV_IN_NOT[11:0]	Std_logic_v ector	0511	0x000	Bit map inverted channels. Bit values as per C_INV_IN_MAP			
C_INV_OFSV_MODE	Integer	03	1	Offset set mode functions bit definition: 0=Self-Zero 1=S/W registers			
C_INV_OVER_IPHS	integer	01	1	Overcurrent detection motor phases			
C_INV_OVER_IBUS	integer	01	1	Overcurrent detection dc_link			
C_INV_FILTER	Integer	01	1	2nd order LPF inputs			
C_INV_EVAL_VPHS	Integer	01	1	Evaluation of Vs			
C_INV_R2P_VPHS	Integer	01	1	Rectangular to polar instance for Vs			
C_CLARKE_NPHS	Integer	0,2,3	3	Clarke transform input phases. O=transparent (2- phases only for bipolar stepper motor) 2=2-phases used in 3- phases motor 3=3-phases used in 3- phases motor			

© 2007-2022 QDeSys, All rights reserved.

Product Specification

	Integer	01	1	Enable Decoupling
C_DCPL_KJFF				function after PI
				control
C_VSVEC_AJFF	Integer	01	0	Enable user Vs feed
C_V3VEC_AJFF				forward
	Integer	01	1	Enable BEMF
C_BEMF_KLIN				Linearization LUT
	integer	02	1	Include PWM
C_PWM_MODULATOR	-			modulator IP
	integer	02	1	Include RPFM
C_RPFM_MODULATOR	U			modulator IP
	integer	01	1	RPFM 3-level
C_RPFM_3_LEVEL		•	_	extension
	integer	01	1	RPFM 3-level T-PNC
C_RPFM_TPNC	incegei	0.12	-	variant
	integer	01	1	Include SMO Position
C_SMO_EVAL	integer	01	-	Estimator IP
	integer	01	1	Include Speed
C_SPD_EVAL	integer	01	T	Measurement IP
	lintogov	0.1	1	
C_SPEED_CTRL	Integer	01	1	Include speed loop
C_EXTANGLE	integer	02	1	Include external angle
0_2/////022				sensor IP
C_RESOLVER	integer	02	1	Include resolver
C_RESOLVER				sensor IP
	integer	165536	50000	Resolver exciter
C_RSV_EXCMIN				minimum value
	integer	165536	50000	Resolver SIN/COS
C_RSV_SOCMIN	_			minimum value
	integer	165536	100	Resolver timeout for
C_RSV_EXCTMO	U			exciter
	integer	02	0	Exciter polarity:
C_RSV_EXCPOL			-	0=both, 1=positive,
0				2=negative
	integer	03	0	Resolver LUT enable
C RSV ANGLUT	inceger	05	U	0=disable, 1=1K, 2=2K,
				3=4K
	integer	01	0	Resolver angle filter
C_RSV_ANGFLT	integer	01	U	enable
	intogor	018,255	5	Resolver angle LUT
	integer	010,200	Э	ů.
C_RSV_ALRELK				mode: 018=relative,
				255=absolute
C_HALLSENSOR	integer	01	1	Include hall sensor IP

© 2007-2022 QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Product Specification

C_ENCODER	Integer	01	2	Include enhanced 23 wire encoder IP
C_MANROT	Integer	02	2	Scalar mode rotor angle IP: 0=no, 1=angle update, 2=enhanced with ramp and 2 nd order filter
C_MRT_ACCMAX_DLN2	Integer	816	16	Base 2 logarithm of MRT acceleration limiter
C_DCK_SP_DLN2	Integer	0n	9	Base 2 logarithm of speed divider in decoupling
C_DCK_KE_DLN2	Integer	0n	24	Base 2 logarithm of magnetic flux constant divider in decoupling
C_DCK_KL_DLN2	Integer	0n	41	Base 2 logarithm of electromagnetic flux constant divider in decoupling
C_SMO_ZS_DLN2	integer	2226	24	Base 2 logarithm of proportional error divisor
C_SMO_F2_DLN2	integer	2630	28	Base 2 logarithm divider use to eval K of 2 nd LPF
C_SLP_PRO_DLN2	Integer	0n	1	Base 2 logarithm of speed loop proportion error regulator
C_SLP_INT_DLN2	Integer	0.n	5	Base 2 logarithm of speed loop integrative error regulator
C_SLP_INDWP_DLN2	Integer	0.n	1	Base 2 logarithm of speed loop integrative error regulator for anti windup
C_SLP_INDWP_KDIV	Integer	0.n	1	Base 2 logarithm of speed loop integrative error regulator for anti windup
C_ISOVERFLOW_CMAX	integer	115	1	Current modulo overflow counter limit

© 2007-2022 QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Product Specification

C_PI_ERPRO_DLN2	integer	0n	12	Base 2 logarithm of current loop PI proportional error divisor
C_PI_ERINT_DLN2	integer	0n	18	Base 2 logarithm of current loop PI integrative error divisor

mosysfoc - system interface for FOC

Product Specification

SIGNALS

Signal	I/O	Description
S_AXI_ACLK	IN	Clock (rising edge).
S_AXI_ARESETN	IN	Reset. Active low.
S_AXI:	slave A	XI write access signals
S_AXI	: slave	AXI read access signal
Core to	Core r	nultiple register access
mckc_rdata[4095:0]	OUT	Register Data Read. 128 registers, 32-bits each
mckc_wdata[4095:0]	IN	Register Data Write. 128 registers, 32-bits each
mckc_wstrb[127:0]	IN	Register Strobe Write. 128 registers
1	Motor o	control Interface
paipol[7:0]	OUT	Motor pole pairs
ext_0_angofs[15:0]	OUT	External_0 electric angle offset
ext_0_angle[31:0]	IN	External_0 electric angle value
ext_1_angofs[15:0]	OUT	External_1 electric angle offset
ext_1_angle[31:0]	IN	External_1 electric angle value
rsv_m2rppk [7:0]	OUT	Motor pole pairs vs Resolver pole pairs
Analog resolver sensor inputs for	r positi	on evaluation (see QD_TDS_124 for description)
rsv_0_angofs[15:0]	OUT	Resolver_0 angle offset
rsv_0_angle[31:0]	OUT	Resolver_0 angle value
rsv_0_mangle[31:0]	OUT	Resolver_0 mechanical angle
rsv_0_sync	OUT	Resolver_0 angle sync
rsv_0_msync	OUT	Resolver_0 mechanical angle sync
rsv_0_priexc[17:0]	IN	Resolver_0 primary winding exciter
rsv_0_secsin[17:0]	IN	Resolver_0 secondary winding sine
rsv_0_seccos[17:0]	IN	Resolver_0 secondary winding cosine
rsv_1_angofs[15:0]	OUT	Resolver_1 angle offset
rsv_1_angle[31:0]	OUT	Resolver_1 angle value

© 2007-2022 QDeSys, All rights reserved.

Product Specification

rsv_1_mangle[31:0]	OUT	Resolver_1 mechanical angle
rsv_1_sync	OUT	Resolver_1 angle sync
rsv_1_msync	OUT	Resolver_1 mechanical angle sync
rsv_1_priexc[17:0]	IN	Resolver_1 primary winding exciter
rsv_1_secsin[17:0]	IN	Resolver_1 secondary winding sine
rsv_1_seccos[17:0]	IN	Resolver_1 secondary winding cosine
		valuation (see QD_TDS_122 for description)
hls_angle[31:0]	OUT	Hall sensors angle
hls_hallsig[5:0]	IN	Hall sensors digital inputs
		tion (see QD_TDS_101 for more details)
enc_angle[31:0]	OUT	Encode sensors angle
enc_cha	IN	Encoder channel A.
enc_chb	IN	Encoder channel B.
enc_chi	IN	Encoder channel index.
Inverter	analo	g, values are SIGNED18.
acq_iphs_a[17:0]	IN	Motor current Phase-A
acq_iphs_b[17:0]	IN	Motor current Phase-B
acq_iphs_c[17:0]	IN	Motor current Phase-C
acq_ibus_x[17:0]	IN	Dc_link current
acq_vphs_a[17:0]	IN	Motor voltage Phase-A
acq_vphs_b[17:0]	IN	Motor voltage Phase-B
acq_vphs_c[17:0]	IN	Motor voltage Phase-C
acq_vbus_x[17:0]	IN	Dc_link voltage
acq_sync	IN	Acquisition synchronization.
Inverter an	alog of	fset, values are SIGNED18.
ofs_iphs_a[17:0]	OUT	Motor current Phase-A
ofs_iphs_b[17:0]	OUT	Motor current Phase-B
ofs_iphs_c[17:0]	OUT	Motor current Phase-C
ofs_ibus_x[17:0]	OUT	Dc_link current
ofs_vphs_a[17:0]	OUT	Motor voltage Phase-A
ofs_vphs_b[17:0]	OUT	Motor voltage Phase-B
ofs_vphs_c[17:0]	OUT	Motor voltage Phase-C
ofs_vbus_x[17:0]	OUT	Dc_link voltage
Inverter analo	og norm	nalized, values are SIGNED18.
nrm_iphs_a[17:0]	OUT	Motor current Phase-A
nrm_iphs_b[17:0]	OUT	Motor current Phase-B
nrm_iphs_c[17:0]	OUT	Motor current Phase-C

© 2007-2022 QDeSys, All rights reserved.

Product Specification

nrm_ibus_x[17:0]	OUT	Dc link current			
nrm_vphs_a[17:0]	OUT	Motor voltage Phase-A			
nrm_vphs_b[17:0]	OUT	Motor voltage Phase-B			
nrm_vphs_c[17:0]	OUT	Motor voltage Phase-C			
nrm_vbus_x[17:0]	OUT	Dc link voltage			
nrm_sync	OUT	Data synchronization.			
		ered, values are SIGNED18.			
flt_iphs_a[17:0]	OUT	Motor current Phase-A			
flt_iphs_b[17:0]	OUT	Motor current Phase-B			
flt_iphs_c[17:0]	OUT	Motor current Phase-C			
flt_ibus_x[17:0]	OUT	Dc_link current			
flt_vphs_a[17:0]	OUT	Motor voltage Phase-A			
flt_vphs_b[17:0]	OUT	Motor voltage Phase-B			
flt_vphs_c[17:0]	OUT	Motor voltage Phase-C			
flt vbus x[17:0]	OUT	Dc link voltage			
flt_sync	OUT	Data synchronization.			
ovi_iphs_a	Out	Motor Phase-A overcurrent			
ovi_iphs_b	Out	Motor Phase-B overcurrent			
ovi_iphs_b	Out	Motor Phase-C overcurrent			
ovi_ibus_x	Out	DC_link overcurrent			
Ismodover	Out	Is modulo overcurrent			
modtype[0:0]	IN	Selected modulator 0=PWM, 1=RPFM			
modlevels[0:0]	IN	Modulator levels 0=2-levels, 1=3-levels			
is3phases	IN	Three-phase motor selection flag. Active high ("1").			
PWN	/l 2-pha	ases, 2-levels output			
pwm2p_l2c1w1 [1:0]		coil-1, winding-1			
pwm2p_l2c2w1 [1:0]	OUT	coil-2, winding-1			
pwm2p_l2c1w2 [1:0]	OUT	coil-1, winding-2			
pwm2p_l2c2w2 [1:0]	OUT	coil-2, winding-2			
pwm2p_l2sync	OUT	Sync signal			
PWN	PWM 3-phases, 2-levels output				
pwm3p_l2cxw1 [2:0]	OUT	Coil 321, winding-1			
pwm3p_l2cxw2 [2:0]	OUT	Coil 321, winding-2			
pwm3p_l2sync	OUT	Sync signal			
RPFN	Л 3-pha	ases, 2-levels output			
rpfm3p_l2cxw1 [2:0]	OUT	Coil 321, winding-1			
rpfm3p_l2cxw2 [2:0]	OUT	Coil 321, winding-2			
rpfm3p_l2sync	OUT	Sync signal			

© 2007-2022 QDeSys, All rights reserved.

Product Specification

RPFM 3-phases, 3-levels output				
rpfm3p 3c1w1[1:0]	OUT	Coil1, winding-1		
rpfm3p_l3c2w1[1:0]	OUT	Coil2, winding-1		
rpfm3p_l3c3w1[1:0]	OUT	Coil3, winding-1		
rpfm3p_l3c1w2[1:0]	OUT	Coil1, winding-2		
rpfm3p_l3c2w2[1:0]	OUT	Coil2, winding-2		
rpfm3p_l3c3w2[1:0]	OUT	Coil3, winding-2		
rpfm3p_l3sync	OUT	Sync signal		
deadtval[7:0]	Out	UNSIGNED8 gate unit dead time valid code		
gwswcnt[31:0]	IN	UNSIGNED32, gate unit switches diagnostic		
gwswent[51.0]		counter		
hwfail	IN	Gate unit h/w failure		
hwkill	IN	Gate unit KILL input (fast cut-off)		
coilgear	OUT	Coil signal gear		
coilenab	OUT	Coil signals enable		
syserr	OUT	Motor control IP system error		
	<u></u>			
reseterr	OUT	Reset latched errors		
zerocurr	OUT	Zero current offset		
zerovbusx	Out	Zero DC_link offset command		
zerovphsx	Out	Zero motor phases command		
		trol PI probe/signals		
pix_setval[17:0]	OUT	SIGNED18. Target X-frame		
piy_setval[17:0]	OUT	SIGNED18. Target Y-frame		
pix_fbkval[17:0]	OUT	SIGNED18. Feedback X-frame		
piy_fbkval[17:0]	OUT	SIGNED18. Feedback Y-frame		
pix_outpro[17:0]	OUT	SIGNED18. Proportional Output X-frame		
piy_outpro[17:0]	OUT	SIGNED18. Proportional Output y-frame		
pix_outint[17:0]	OUT	SIGNED18. Integrative Output X-frame		
piy_outint[17:0]	OUT	SIGNED18. Integrative Output X-frame		
pix_outval[17:0]	OUT	SIGNED18. Total Output X-frame		
piy_outval[17:0]	OUT	SIGNED18. Total Output Y-frame		
· · · · ·		ed forward contribute)		
dck_er_out_x[17:0]		SIGNED18. Bemf Output X-frame		
dck_er_out_y[17:0]	OUT OUT	SIGNED18. Bemf Output Y-frame SIGNED18. Total Output X-frame		
dck_vs_out_x[17:0]	OUT	SIGNED18. Total Output X-frame		
dck_vs_out_y[17:0]	001			

^{© 2007-2022} QDeSys, All rights reserved. QDESYS, the **QDeSys** logo, are trademarks of **QDeSys**. All other trademarks are the property of their respective owners.

Product Specification

1	
OUT	Spare/no more implemented
OUT	UNSIGNED17, Vs module
OUT	Vs angle
OUT	UNSIGNED17, Is module
OUT	Is angle
OUT	UNSIGNED17, Va module (measured Vs)
OUT	Va angle (measured Vs)
OUT	SMO Zs angle
OUT	UNSIGNED17, SMO Zs module
OUT	SMO angle
OUT	Scalar mode IP angle
OUT	Rotor angle
OUT	Rotor selector
OUT	Motor speed
OUT	Motor position
OUT	Ts cycle time in clock units
	OUT OUT

Product Specification

Detailed Description

This module implements the system register for the set up and run time execution of the *motorfoc* module.

In the following section is reported the map of the registers used by the module. All registers are 32 bits size. The register offset is "register index" * 4.

Registers description table

REGISTERS DESCRIPTION						
Register index	Register name	Access	Description			
0	ip_ident	READ	Motor control IP identification			
1	tsclocks	READ	Measured cycle time (clocks)			
2	motor_control	R/W	Motor control			
3	motor_status	READ	Motor status / event			
4	val_iphs_a	READ	Current phase-A			
5	val_iphs_b	READ	Current phase-B			
6	val_iphs_c	READ	Current phase-C			
7	val_ibus_x	READ	Current DC_link			
8	val_vphs_a	READ	Voltage phase-A			
9	val_vphs_b	READ	Voltage phase-B			
10	val_vphs_c	READ	Voltage phase-C			
11	val_vbus_x	READ	Voltage DC_link			
12	val_vphs_n	READ	Voltage neutral			
13	ofs_iphs_a	R/W	Current phase-A			
14	ofs_iphs_b	R/W	Current phase-B			
15	ofs_iphs_c	R/W	Current phase-C			
16	ofs_ibus_x	R/W	Current DC_link			
17	ofs_vphs_a	R/W	Voltage phase-A			
18	ofs_vphs_b	R/W	Voltage phase-B			
19	ofs_vphs_c	R/W	Voltage phase-C			
20	ofs_vbus_x	R/W	Voltage DC_link			
21	ofs_vphs_n	R/W	Voltage neutral			
22	mul_iphs_a	R/W	Current phase-A			
23	mul_iphs_b	R/W	Current phase-B			
24	mul_iphs_c	R/W	Current phase-C			
25	mul_ibus_x	R/W	Current DC_link			
26	mul_vphs_a	R/W	Voltage phase-A			
27	mul_vphs_b	R/W	Voltage phase-B			
28	mul_vphs_c	R/W	Voltage phase-C			
29	mul_vbus_x	R/W	Voltage DC_link			

^{© 2007-2022} QDeSys, All rights reserved.

Product Specification

	REGISTERS DESCRIPTION					
Register index	Register name	Access	Description			
30	mul_vphs_n	R/W	Voltage neutral			
31	xbus_fk1	R/W	dc_link LPFT1 #1 const			
32	xbus_fk2	R/W	dc_link LPFT1 #2 const			
		- 4				
33	xphs_fk1	R/W	Phases LPFT1 #1 const			
34	xphs_fk2	R/W	Phases LPFT1 #2 const			
25	ihua linait		De liek euweent limit			
35 36	ibus_limit iphs limit	R/W R/W	Dc_link current limit Phases current limit			
30						
37	ismodmax	R/W	Is current limit			
57		.,,				
38	ismodval	READ	Is real time current value			
39	isangval	READ	Is real time angle value			
40	vamodval	READ	Va real time modulo			
41	vaangval	READ	Va real time angle			
42	vsmodval	READ	Vs real time modulo			
43	vsangval	READ	Vs real time angle			
44	vs_rotor_x	READ	Vs rotor reference X-frame			
45	vs_rotor_y	READ	Vs rotor reference Y-frame			
10	ret englef		Deter position reset angle			
46 47	rot_angdef	R/W READ	Rotor position reset angle Rotor position angle			
4/	rot_angle	NLAD				
	I	<u></u>	Deed evaluation registers			
48	spd_fktau1	R/W	Speed evaluation LPFT1 #1 const			
49	spd_fktau2	R/W	Speed evaluation LPFT1 #2 const			
50	spd_speed	READ	Speed evaluation current speed			
	, · — ·		•			
	SMO Position evaluation registers					
51	smo_smontmr	R/W	On timer			
52	smo_vs_mult	R/W	Vs multiplier			
53	smo_is_mult	R/W	Is multiplier			
54	smo_zs_max	R/W	BEMF max error			
55	smo_es1_kflt	R/W	BEMF LPF1 #1			
56	smo_es2_kflo	R/W	LPF1 #2 base			

© 2007-2022 QDeSys, All rights reserved.

Product Specification

	REGISTERS DESCRIPTION						
Register index	Register name	Access	Description				
57	smo_es2_kfmx	R/W	LPF1 #2 mult				
58	smo_es2_kflt	READ	BEMF LPF1 #2				
59	smo_angofs	R/W	angle offset				
60	smo_bemf_p	READ	BEMF Angle				
61	smo_bemf_m	READ	BEMF Modulo				
62	smo_angle	READ	Output Angle				
63	pos_position	READ	Low resolution current position				
			Speed Loop Control				
64	slp_spdset	R/W	Speed set point				
65	slp_kmpro	R/W	Proportional gain				
66	slp_kmint	R/W	Integrative gain				
67	slp_outlim	R/W	Current limit				
68	slp_kmultx	R/W	Current X multiplier				
69	slp_kmulty	R/W	Current Y multiplier				
70	paipol	R/W	Motor pair poles (1n) External rotor angle sensor				
71	ext_0_angofs	R/W	External_0 angle offset				
72	ext_1_angofs	R/W	External_1 angle offset				
73	ext_0_angle	READ	External_0 angle				
74	ext_1_angle	READ	External_1 angle				
	• <u> </u>		Resolver angle sensor				
75	rsv_m2rppk	R/W	Motor to Resolver Pair Poles Ratio				
76	rsv_spdfkt	R/W	Resolver speed LPF1 filter				
77	rsv_angfkt	R/W	Resolver angle LPF1 filter				
78	rsv_0_angofs	R/W	Resolver_0 angle offset				
79	rsv_1_angofs	R/W	Resolver_1 angle offset				
80	rsv_0_angle	READ	Resolver_0 angle				
81	rsv_1_angle	READ	Resolver_1 angle				
	1	T	Hall sensor				
82	hls_ctolim	R/W	Counter timeout limit				
83	hls_angle	READ	Hall sensor angle				
	Incremental encoder						
84	enc_index	READ	Encoder index				
85	enc_phase	READ	Encoder phase				
86	enc_phcpt	READ	Encoder phase hold				
87	enc_cyprnd	R/W	Cycles per round				
88	enc_angphs	R/W	Encoder angle increments per phase				

© 2007-2022 QDeSys, All rights reserved.

Product Specification

REGISTERS DESCRIPTION						
Register index	Register name	Access	Description			
89	enc_angle	READ	Encoder Electric rotor angle			
			Manual rotor angle			
90	mrt_speed	R/W	Encoder simulator angle increments per netmot s-link packet (see detailed description)			
91	mrt_accmax	R/W	Acceleration limit			
92	mrt_fktau1	R/W	First LPF1 filter speed			
93	mrt_fktau2	R/W	Second LPF1 filter speed			
94	mrt_spdout	READ	Speed set			
95	mrt_angle	READ	Encoder simulator Electric rotor			
	Pi_control reg	gulator fo	r X-frame or D-frame and Y-frame or Q-frame			
96	pi_setvalx	R/W	Target X-frame			
97	pi_setvaly	R/W	Target Y-frame			
98	pi_kmprox	R/W	Proportional gain X-frame			
99	pi_kmproy	R/W	Proportional gain Y-frame			
100	pi_kmintx	R/W	Integrative error gain X-frame			
101	pi_kminty	R/W	Integrative error gain Y-frame			
		Decuplin	g, PI extension for feed forward			
102	dck_ldkmul	R/W	Motor Ld multiplier (ele. Flux)			
103	dck_lqkmul	R/W	Motor Lq multiplier (ele. Flux)			
104	dck_kekmul	R/W	Motor Ke multiplier (mag. Flux)			
		User	feed forward voltage vector			
105	vs_ajff_x	R/W	Vs vector X-frame			
106	vs_ajff_y	R/W	Vs vector Y-frame			
		Deveff				
107	h and a s f -		eed forward linearization LUT			
107	bemfangofs	R/W	Angle offset			
	<u> </u>		Common modulators			
108	mod2angskw	R/W	Second modoulator angle skew			
			<u> </u>			
100		D / 1 /	PWM modulator			
109	pwm_angofs	R/W	Angle offset			
110	pwm_kmod	R/W	gain multiplier			
111	pwm_presc	R/W	Frequency prescaler			
112	pwm_mdmax	R/W	Modulation limit			
113	pwm_mdval	READ	real time modulation value			
114	pwm_minpw	R/W	Minimum allowed pulse width			
115	pwm_ctrl	R/W	Control register			

© 2007-2022 QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Product Specification

REGISTERS DESCRIPTION							
Register index	Register name	Access	Description				
			RPFM modulator				
116	rpfm_angofs	R/W	Angle offset				
117	rpfm_ctrl	R/W	Control register				
118	deadtval	R/W	Gate unit dead time value				
119	gwswcnt	R	Gate unit switches counter				
	LUT access						
120	lut_addr	R/W	LUT address register				
121	lut_data	<i>R/W</i> LUT data register					

Product Specification

Motor_ip_ident - Motor IP identification register

This register reports the IP identification register. The current value is for test purpose only.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
2431	Ip_id_code	READ	1	Code
1623	Ip_id_majv	READ	1	Major version
815	Ip_id_minv	READ	2	Minor version
07	lp_id_hscrt	READ	97	H/W S/W compatibility

TSclocks – FOC clock cycles

This register reports the number of system clocks between two consecutive FOC activation

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1231		READ	0	Unused/reserved
110	tsclocks	READ	-	System clocks on FOC cycle

Motor_control – Motor control register

This register controls the FOC IP.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
2931		READ	0	Unused/reserved
28	pi_himdovf	R/W	0	Enable lock PI integration when modulator overflow
27	smo_usevsact	R/W	0	SMO Vs selector: 0=target, 1=measured
26	zerovphsx	R/W	0	Zero motor voltage phases (0->1 only)
25	zerovbusx	R/W	0	Zero dc_link voltage (0->1 only)
24	reseterr	R/W	0	Reset latched error
23	zerocurr	R/W	0	Zero current offset command (0->1 only)
22	slp_mrt2spd	R/W	0	Pos&Speed: MRT to Speed loop link
21	slp_spd2trq	R/W	0	Speed loop feeds the current loop
20	enc_xmcha	R/W	0	Encoder CH-A match for index event
19	enc_xmchb	R/W	0	Encoder CH-B match for index event
18	enc_xmchi	R/W	0	Encoder CH-I match for index event
17	enc_inten	R/W	0	Encoder interpolator enable
16	enc_rstang	R/W	0	Encoder electric rotor angle evaluation reset control
				1=reset-lock, 0=running
15	dck_useisset	READ	0	Used Is target in decoupling
14	mrt_rstang	R/W	0	Encoder emulator electric rotor angle evaluation reset control

© 2007-2022 QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Product Specification

				1=reset-lock, 0=running
13	smo_rstang	R/W	0	Position Eval electric rotor angle reset control
				1=reset-lock, 0=running
12	fbk_angdef	R/W	0	Default angle selector
				0=default register
				1=rot_angle feedback
11	pi_deafmd	R/W	0	PI current feedback control
				1=ignore feedback, 0=use feedback
10	is3phases	R/W	0	1=3-phase motor, 0=stepper motor
9	spare_9	READ	0	Unused/reserved
8	modlevels	R/W	0	0=2-levels, 1=3-levels
74	rot_select	R/W	0	Rotor selector angle:
				0=manual : "rot_angdef" register,
				1=MRT : scalar mode,
				2=ENC : incremental encoder,
				3=SMO : sliding mode observer,
				4=HLS : hall sensors,
				5=RSV_0 : resolver_0,
				6=EXT_0 : external_0 sensor
				7=RSV_1 : resolver_1,
				8=EXT_1 : external_1 sensor
3	spare_3	READ	0	Unused/reserved
2	modtype	R/W	0	Modulator selector request
				0=PWM
				1=RPFM
1	spare_1	READ	0	Unused/reserved
0	coilenab	R/W	0	Coil enable
				1=IP control, 0=drive LOW

Motor_status - Motor status register

This register report FOC status and let reset of latched events. The read access freeze some status registers for atomic read.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved
16	hwkill	READ	0	Kill input from Gate unit
15	hwfail	READ	0	H/W failure from Gate unit
14	ovi_iphs_a	READ	0	Overcurrent motor Phase-A
13	ovi_iphs_b	READ	0	Overcurrent motor Phase-B
12	ovi_iphs_c	READ	0	Overcurrent motor Phase-C
11	ovi_ibus_x	READ	0	Overcurrent dc_link
10	syserr	READ	0	Global system error
9	spare_9	READ	0	-

© 2007-2022 QDeSys, All rights reserved.

Product Specification

8	spare_8	READ	0	-
7	spare_7	READ	0	-
65	rpfmzmd	READ	0	RPFM modulation zone 0=IDLE (not operational) 1=Sinusoidal/Extended sinusoidal(linear zone) 2=Hexagon zone (partial saturation) 3=Saturation zone (square wave or six step)
4	modtype0	READ	0	Modulator type in use 0=PWM, 1=RPFM
3	spd_fwdir	READ	0	speed evaluation moving direction 1=FWD, 0=REV
2	spd_moving	READ	0	speed evaluation moving status 1=moving, 0=still
1	pwm_mdovf	READ	0	PWM modulation overflow
0	ismodover	READ	0	Is current overflow. The 1=overflow will stop the motor to a safe condition. The event reset requires switch off the motor writing "0" in coil enable control register bit

Inverter values from A/D acquisition.

This register returns the voltage and current of motor phases and dc-link. The values are normalized as SIGNED18

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unused/reserved
	val_iphs_a val_iphs_b val_iphs_c			Motor Phase-A current Motor Phase-B current Motor Phase-C current
017	val_ibus_x val_vphs_a val_vphs_b val_vphs_c val_vbus_x val_vphs_n	READ	0	Dc_link current Motor Phase-A voltage Motor Phase-B voltage Motor Phase-C voltage Dc_link voltage Motor neutral voltage

The value is SIGNED18. For external representation in "Amperes" and "Volts", multiply by proper gain floating point constant.

BIT NUMBER/INDEX	INVERTER ANALOG CHANNEL
0	IPHS_A
1	IPHS_B
2	IPHS_C
3	IBUS_X

© 2007-2022 QDeSys, All rights reserved.

4	VPHS_A
5	VPHS_B
6	VPHS_C
7	VBUS_X
8	VPHS_N

The configuration constant C_INV_IN_MAP is used to define the number of active channels. The configuration constant C_INV_IN_NOT is used to force two complement values (for negative inputs). Both constants are integer bit mask where each bit refer a specific analog channel. The default value 131 (decimal) in C_INV_IN_MAP correspond to binary value '01000011b'. This means the IPHS_A, IPHS_B and VBUS_X are implemented.

Inverter offset value.

This register let set/get the offset values for zero calibration for each analog channel. The values are normalized as SIGNED18

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unused/reserved
	ofs_iphs_a			Motor Phase-A current
	ofs_iphs_b			Motor Phase-B current
	ofs_iphs_c			Motor Phase-C current
	ofs_ibus_x			Dc_link current
017	ofs_vphs_a	R/W	0	Motor Phase-A voltage
	ofs_vphs_b			Motor Phase-B voltage
	ofs_vphs_c			Motor Phase-C voltage
	ofs_vbus_x			Dc_link voltage
	ofs_vphs_n			Motor neutral voltage

These registers let zero calibration of analog acquisition system. Two methods of zero calibration are allowed if enabled in C_INV_OFSV_MODE.

BIT	NAME	DEFAULT	DESCRIPTION
1	ZERO_SW	0	Individual offset register can be set
0	ZERO_AUTO	1	Automatic zero function on command

Inverter multiplier value.

This register let set/get the multiplier values for gain calibration for each analog channel. The values are normalized as SIGNED18

BIT NAME ACCESS RESET I	DESCRIPTION
-------------------------	-------------

© 2007-2022 QDeSys, All rights reserved.

1831		READ	0	Unused/reserved
	mul_iphs_a			Motor Phase-A current
	mul_iphs_b			Motor Phase-B current
	mul_iphs_c			Motor Phase-C current
	mul_ibus_x			Dc_link current
017	mul_vphs_a	R/W	0	Motor Phase-A voltage
	mul_vphs_b			Motor Phase-B voltage
	mul_vphs_c			Motor Phase-C voltage
	mul_vbus_x			Dc_link voltage
	mul_vphs_n			Motor neutral voltage

These registers let gain calibration of analog acquisition system.

The value is multiplied by 2^{16} so the effective gain is: gain = register / 2^{16} . He gain range is -2..2. The default gain is 1 with register value of 65536.

xbus_fk1, xbus_fk2 - DC_LINK LPF1 parameter register

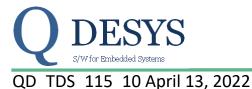
These registers are used to setup the cutting frequency of LPF1 used to filter the dc_link both voltage and current.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved
016	xbus_fk1/xbus_fk2	R/W	0	LPF1 multiplier constant in range 02 ¹⁷ -1

A second order filter is implemented using two LPF1 first order filters in cascade configuration. The xbus_fk1 is used to configure the first filter, and the xbus_fk2 is used to configure the second filter.

The filter IP is enabled if C_INV_FILTER = 1.

xphs_fk1, xphs_fk2 - Motor phases LPF1 parameter register


These registers are used to setup the cutting frequency of LPF1 used to filter the motor phases both voltage and current.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved
016	xphs_fk1/xphs_fk2	R/W	0	LPF1 multiplier constant in range 02 ¹⁷ -1

A second order filter is implemented using two LPF1 first order filters in cascade configuration. The xphs_fk1 is used to configure the first filter, and the xphs_fk2 is used to configure the second filter.

The filter IP is enabled if C_INV_FILTER = 1.

© 2007-2022 QDeSys, All rights reserved.

Ibus_limit – current limit for dc_link

The register is used to set the dc_link current limit to protect the inverter and dc_link source from overcurrent.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	ibus_limit	R/W	0	dc_link current limit

Iphs_limit – current limit for motor phases

The register is used to set the motor phases current limit to protect the inverter, and the motor from overcurrent.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	iphs_limit	R/W	0	Motor phases current limit

Ismodmax – Is current limit

The register is used to set the Is current limit to protect the motor against overcurrent. The FOC IP monitor the Is current and compare the value with the defined limit. In case of overflow the ismodover bit is set into motor status register: the motor will stop immediately and coil driver will be set to neutral position.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	ismodmax	R/W	0	ls current limit

Ismodval – Is current value

The read only register report the real time Is current modulo.

Product Specification

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	ismodval	READ	0	Is current modulo

Isangval – Is current angle

The read only register report the real time Is current angle. The value resolution is 2^{32} =360 degrees.

	BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
C)31	isangval	READ	0	Is current angle

Vamodval – Va voltage value

This read only UNSIGNED17 register reports the real time Va voltage modulo from acquisition

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	vamodval	READ	0	Va voltage modulo

Vaangval – Va voltage angle

This read only register reports the real time Va voltage angle. The value resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	vaangval	READ	0	Va voltage angle

Vsmodval – Vs voltage value

This read only UNSIGNED17 register reports the Vs voltage modulo to modulator.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	vsmodval	READ	0	Vs voltage modulo

Vsangval – Vs voltage angle

This read only register reports the Vs voltage angle to modulator. The value resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
-----	------	--------	----------------	-------------

© 2007-2022 QDeSys, All rights reserved.

mosysfoc - system interface for FOC

QD_TDS_115_10 April 13, 2022

Product Specification

031 vsangval READ 0 Vs voltage angle	
--------------------------------------	--

Vs_rotor_x/y– Vs voltage D/Q rotor

This read only SIGNED18 registers reports the Vs voltage vector relative to rotor or before inverse park transforming.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	vs_rotor_x vs_rotor_y	READ	0	Vs voltage vector X/Y frame

rot_angdef - rotor initial angle

This register is used to set the initial angle value for all position IP cores. The value is defined as electric rotor angle. The value is loaded at h/w and manual reset of IP. The register is UNSIGNED32 value with 2^{32} =360 degrees. With number of pair poles = 1 the angle correspond to mechanical rotor angle.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	rot_angdef	R/W	0	Initial angle for position IP cores

rot_angle - rotor angle

This read only register contains the real time angle generated by IP. The angle resolution is 2^{32} =360 degrees. The value is loaded from selected IP cores according to rot_selector defined in motor control register. In case of IP core reset, rot_angle assumes the value according to rot_selector and fbk_angdef values.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	rot_angle	READ	0	Angle value

Spd_fktau1, spd_fktau2 - Speed evaluation LPF1 parameter register

These registers are used to setup the cutting frequency of LPF1 used in speed evaluation IP core.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved

© 2007-2022 QDeSys, All rights reserved.

016	spd_fktau1 spd_fktau2	R/W	0	LPF1 multiplier constant in range 02 ¹⁷⁻¹

A second order filter is implemented using two LPF1 first order filters in cascade configuration. The spd_fktau1 is used to configure the first filter, and the spd_fktau2 is used to configure the second filter.

The LPF1 formula is the following: Y = Y + (X - Y) * K

Where:

Y = internal accumulator and result;

X = new current sample;

K = error weight in range 0...1.

The spd_fktau1/2 register is an UNSIGNED17 value in range 0...131071 for a corresponding: $K = [0/2^{17}...(2^{17}-1)/2^{17}]$.

The filter function is executed for every IP activation. Refer to LPF1 IP for details.

Spd_speed – Speed evaluation current speed register

The speed is evaluated by integration of "rot_angle" signal that correspond of electric speed of rotor.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	spd_speed	READ	0	SIGNED32 speed value

The speed is defined as angle/time where:

Angle is the register content in range $-2^{31}...2^{31}-1$ that correspond to: A = value / $2^{32} * 2 \pi$ The time is defined by IP core activation time.

Example: the value 1374390 with 3.2 μSec of IP core activation time correspond to about 100 Hz NOTE: The speed is defined as electric speed.

smo_smontmr - position evaluation ON timer

The value is an UNSIGNED15 FOC cycle timer to enable SMO BEMF usage for smooth start.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unused/reserved
015	smo_smontmr	R/W	0	Vs multiplier

smo_vs_mult - position evaluation Vs multiplier

The value is an UNSIGNED32 multiplier used by the position evaluation IP core. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	smo_vs_mult	R/W	0	Vs multiplier

smo_is_mult - position evaluation Is multiplier

The value is an UNSIGNED32 multiplier used by the position evaluation IP core. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	smo_is_mult	R/W	0	Is multiplier

smo_zs_max - position evaluation maximum error

The value is an UNSIGNED17 that represents the absolute maximum error in the BEMF evaluation. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_zs_max	R/W	0	Absolute max BEMF error

smo_es1_kflt - position evaluation BEMF LPF1 #1

The value is an UNSIGNED17 that sets up the first LPF1 used to evaluate the BEMF. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_es1_kflt	R/W	0	LFP1 #1 filter coefficient for BEMF evaluation

smo_es2_kflo - position evaluation BEMF LPF1 #2

The value is an UNSIGNED17 that sets up the second LPF1 used to evaluate the BEMF. The value is used to define the minimum Fcut for speed=0.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_es2_kflo	R/W	0	LFP1 #2 filter coefficient for BEMF evaluation

smo_es2_kfmx - position evaluation BEMF LPF1 #2

The value is an UNSIGNED17 that sets up the second LPF1 used to evaluate the BEMF. The value is used to extend the Fcut according speed.

Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
-----	------	--------	----------------	-------------

© 2007-2022 QDeSys, All rights reserved.

1731		READ	0	Unassigned/reserved
016	smo_es2_kfmx	R/W	0	LFP1 #2 filter coefficient for BEMF evaluation

smo_es2_kflt - position evaluation BEMF LPF1 #2

The value is an UNSIGNED17 that sets up the second LPF1 used to evaluate the BEMF. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_es2_kflt	READ	0	LFP1 #2 filter coefficient for BEMF evaluation

smo_angofs - position evaluation angle offset

The value is an SIGNED16 angle value in range $[-\pi..\pi]$ to compensate the bemf output angle on SMO.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unassigned/reserved
015	smo_angofs	R/W	0	Angle offset

smo_bemf_p - position evaluation BEMF angle

Read only UNSIGNED32 register. It represents the BEMF vector angle. The value 2³² corresponds to 360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	smo_bemf_p	READ	0	BEMF vector phase

smo_bemf_m - position evaluation BEMF modulo

Read only UNSIGNED17 register. It represents the BEMF vector modulo. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_bemf_m	READ	0	BEMF vector modulo

smo_angle- position evaluation rotor electric angle

Read only UNSIGNED32 register. It represents the rotor electric angle (flux vector). The value 2³² corresponds to 360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	smo_angle	READ	0	Rotor electric angle (2 ³²)

© 2007-2022 QDeSys, All rights reserved.

Product Specification

Pos_position– low resolution position rotor electric angle

Read only SIGNED32 register. The range is $-2^{31}...2^{31}-1$. The value 2^{16} corresponds to 360 degrees. The range rounds is $-2^{15}...2^{15}-1$. The value represents the current rotor electric angle according the selected rotor control come.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	pos_position	READ	0	Rotor electric angle (2 ¹⁶)

slp_spdset- speed setpoint for speed loop control

Read/Write SIGNED32 register. Refer to *spd_speed* register for unit definition.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	slp_spedset	R/W	0	Speed setpoint

The speed setpoint is used in speed loop when *spd2trq*=1 to feed the current loop. The speed loop is also used to feed the position loop when *spd4pos*=1.

slp_kmpro- speed proportional error gain for speed loop control

Read/Write IEEE-754 32-bits FLOAT register. The proportional gain is *slp_kmpro / 2*^{P_SLP_PRO_DLN2.}

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	slp_kmpro	R/W	0	Proportional error gain

slp_kmint - speed integrative error gain for speed loop control

Read/Write IEEE-754 32-bits FLOAT register. The integrative gain is *slp_kmint / 2* ^{C_SLP_INT_DLN2.}

BI	г	NAME	ACCESS	RESET VALUE	DESCRIPTION
03	31	slp_kmint	R/W	0	integrative error gain

slp_outlim - speed output current limit

Read/Write UNSIGNED17 register. The values is the current limit for speed control loop.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	slp_outlim	R/W	0	Current limit

© 2007-2022 QDeSys, All rights reserved.

Product Specification

slp_kmultx, slp_kmulty- speed output current multiplier

Read/Write SIGNED18 registers. The values is a K / 2¹⁶ multiplier for X/Y current output setpoint.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	slp_kmultx slp_kmulty	R/W	0	Current X/Y control.

The effective gain are usually evaluated by:

slp_kmultx = cos(angle) * 2¹⁶

slp_kmulty = sin(angle) * 2¹⁶

The angle value for maximum torque is $\pi/2$.

Paipol – motor pair poles

This register setup the number of motor pair poles.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
831		READ	0	Unused/reserved
07	paipol	R/W	0	Motor pair poles in range 1255

The number of pair poles ("pair-poles" = "poles / 2") is used on several sub functional IP. Set the proper value in range "1..n" according motor characteristics.

IMPORTANT: do not set value "0" (zero).

ext_0_angofs/ext_1_angofs - External sensors angle offset

This SIGNED16 read/write register defines the angle offset for tuning of external sensors IP. The angle resolution is 2¹⁶=360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unused/reserved
015	ext_0_angofs ext_1_angofs	R/W	0	External angle offset

ext_0_angle/ext_1_angle - External sensors angle

This SIGNED32 read only register contains the real time angle generated by external sensors IP. The angle resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	ext_0_angle ext_1_angle	READ	0	External angle

rsv_m2rppk – Motor to Resolver Pair Poles Ratio

This register defines the ratio between motor pair poles and resolver pair poles.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
821		READ	0	Unassigned/reserved
07	rsv_m2rppk	R/W	1	Pair Poles Ratio = Motor PP / Resolver PP

Example: if motor pair poles is 6, and resolver pair poles is 2, the register shall be set to 3.

rsv_0_angofs/rsv_1_angofs - Resolver sensors angle offset

This SIGNED16 register set the angle offset to correct alignment between resolver sensor and motor flux. The angle resolution is 2¹⁶=360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unassigned/reserved
015	rsv_0_angofs rsv_1_angofs	R/W	0	Angle value

rsv_0_angle/rsv_1_angle - Resolver sensors angle

This SIGNED32 read only register contains the real time angle generated by resolver sensors IP. The angle resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	rsv_0_angle rsv_1_angle	READ	0	Angle value

hls_ctolim - Hall sensors coasting mode counter timeout limit

This r/w register contains the clock timeout for coasting mode used to control the angle interpolator. The value is system clock units.

Example: with system clock @ 100 MHz, the maximum value 2²⁰-1 is about 10.5 msec.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
2031		READ	0	Unassigned/reserved
019	hls_ctolim	R/W	0	Timeout value

hls_angle – Hall sensors angle

This read only register contains the real time angle generated by hall sensors IP. The angle resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	hls_angle	READ	0	Angle value

enc_index - Encoder index register

It counts the index rising edges pulses or motor revolutions. This register is unipolar (unsigned) and is incremented regardless of rotation direction (forward or reverse).

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_index	READ	0	Rounds counter

enc_phase - Encoder phase register

It counts the sensor phases. This register is bipolar (signed). The counter is incremented in forward direction and decremented in reverse direction. The counter counts four phases for each encoder pulse. If the register size is less than 32 bits then the most significant bits are at fixed value of "0" (no signed extend function is applied).

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_phase	READ	0	Phases counter

Enc_phcpt - Encoder phase hold

The register hold Enc_phase on rising edge of encode index. The first sampled value corresponds to index position at power on, all others values are: initial_offset + revolutions * phases_per_revolutions.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_phcpt	READ	0	Phases counter.

enc_cyprnd - Encoder cycles per round

This UNSIGNED12 register is used to set the pulses (or cycles) per round for the given encoder. An encoder pulse correspond to 4 phases. The value limit is 4095 pulses or 16380 phases.

© 2007-2022 QDeSys, All rights reserved.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1231		READ	0	Unassigned/reserved
011	enc_cpyrnd	R/W	0	Angle increment per phase.

enc_angphs - Encoder angle increment

This register is used to set the angle increment for each phase transition. For a given encoder of 256 pulses per round we have 256 x 4 = 1024 phases per mechanical round. If the motor have 2 pair poles (2=electric rounds for each mechanical round), the electric rotor phases per rounds are 1024 / 2 = 512. The angle resolution is 2^{32} =360 degrees, so the register shall be set to 2^{32} / 512 = 8388608.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_angphs	R/W	0	Angle increment per phase.

Enc_angle - Encoder angle

This read only register contains the real time angle generated by encoder IP. The angle resolution is 2^{32} =360 degrees. The H/W reset or IP user reset can be used to force load of enc_angdef value.

	BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
C	031	enc_angle	READ	Enc_angdef	Angle value

Mrt_speed - scalar mode rotor speed setpoint

This register is used to set the angle increment for each internal time base event.

Example: IP cycle time = 3.2μ S, Motor Pair Poles = 2, Desired speed = 1000 RPM = 16.667 RPS (round per seconds)Rotor Electric speed = 16.667 RPS * 2 pair poles = 33.333 Hz (flux speed is electric rotor speed) Enc_mrtspeed = $33.333 \text{ Hz} / 3.2^{-6} = 10,416,667$

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mrt_speed	R/W	0	Speed set point

The *mrt_speed* is used directly when C_MANROT = 1,

If C_MANROT = 2 the maximum acceleration is applicable and a double LPF1 filter is used to smooth the effective speed.

© 2007-2022 QDeSys, All rights reserved.

Product Specification

Mrt_accmax - scalar mode rotor acceleration limit

This register is used to control the speed ramp from current speed to target speed.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mrt_accmax	R/W	0	Acceleration limit

The value is application with C_MANROT = 2.

Mrt_fktau1/mrt_fktau2 – scalar mode rotor double LPF1filters

The value is an UNSIGNED17 that sets up the first LPF1 used to smooth the speed setpoint in scalar mode rotor control. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	mrt_fktau1 mrt_fktau2	R/W	0	LFP1 filter coefficient for speed value

Mrt_spdout – scalar mode rotor speed value

This read only register report the speed value after double LPF filter.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mrt_spdout	READ	0	Speed value

Mrt_angle – scalar mode rotor angle

This read only register contains the real time angle generated by encoder emulator IP. The angle resolution is 2^{32} =360 degrees. The H/W reset or IP user reset can be used to force load of *enc_angle* value.

The encoder emulator IP input default value is internally connected to encoder IP angle output for a cascade operation. The encoder emulator is in reset=inhibit state, the encoder angle output pass through the encoder emulator.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mrt_angle	READ	Enc_angle	Angle value

© 2007-2022 QDeSys, All rights reserved.

Product Specification

Pi_setvalx, pi_setvaly – PI setpoint value

These SIGNED18 registers are used to setup the desired X/Y currents. The value is compared with current feedback to evaluate the Vs vector. The bit resolution depends on h/w implementation.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	pi_setvalx pi_setvaly	R/W	0	Current setpoint

Pi_kmprox/pi_kmproy – PI proportional error multiplier

These UNSIGNED17 registers are proportional error multiplier for error gain. The effective value is $pi_kmpro / 2^{C_p PI_kRPRO_DLN2}$.

The value is used for both **kmpro_x** and **kmpro_y** internal signals.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pi_kmprox pi_kmproy	R/W	0	Proportional error multiplier

Pi_kmintx/pi_kmint_y – PI integrativ error multiplier

These UNSIGNED17 register are integrative error multiplier for error gain. The effective value is $pi_kmint / 2^{C_PI_ERINT_DLN2}$.

The value is used for both **kmint_x** and **kmint_y** internal signals.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pi_kmintx pi_kminty	R/W	0	Integrator error multiplier

dck_ldkmul,dck_lqkmul - PI decoupling Id and Iq multiplier

These UNSIGNED17 registers are the mantissa of Ld and Lq multipliers used to evaluate both D and Q frames feedforward for decoupling.

The effective value are:

 $Kd = dck_ldkmul / 2^{C_DCK_KL_DLN2}.$

 $Kq = dck_lqkmul / 2^{C_DCK_KL_DLN2}.$

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved

© 2007-2022 QDeSys, All rights reserved.

mosysfoc - system interface for FOC

QD_TDS_115_10 April 13, 2022

Product Specification

016	dck_ldkmul dck_lqkmul	R/W	0	Electromagnetic flux Id/Iq multiplier
-----	--------------------------	-----	---	---------------------------------------

The Ld * Id is used to evaluate the Q-frame contribution. The Lq * Iq is used to evaluate the D-frame contribution.

dck_kekmul – PI decoupling speed multiplier

The UNSIGNED17 register is the mantissa of Ke multiplier used to evaluate the Q-frame feedforward for decoupling.

The effective value is:

 $Ke = dck_kekmul / 2^{C_DCK_KE_DLN2}.$

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	dck_kekmul	R/W	0	Magnetic flux speed multiplier

The Ke * speed is used to evaluate the Q-frame contribution.

bemfangofs – BEMF module compensation LUT angle offset

This SIGNED16 angle is used as displacement in LUT index evaluation. The angle resolution is 2^{16} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unassigned/reserved
015	bemfangofs	R/W	0	Angle value

Mod2angskw – second modulator angle skew

In double independent 3-phases windings of BLDC/PMSM motor, this register SIGNED16 shall be programmed with angle offset of 2^{nd} winding.

The angle resolution is 2¹⁶=360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unassigned/reserved
015	mod2angskew	R/W	0	Angle value

© 2007-2022 QDeSys, All rights reserved.

Pwm_angofs - PWM modulator angle offset

This SIGNED16 angle is added to PWM modulator vector angle The angle resolution is 2^{16} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unassigned/reserved
015	pwm_angofs	R/W	0	Angle value

Pwm_kmod – PWM modulation multiplier

The register is a multiplier applied to Vs voltage modulator for scale correction (PWM frequency and DC_link compensation).

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	pwm_kmod	R/W	0	Pwm argument multiplier

Pwm_presc - PWM prescaler

Two PWM prescaler UNSIGNED17 bit register is used to set the PWM frequency. The PWM wave generator runs at main clock frequency.

The value width is 17 bits for a range in $0...2^{17}$ -1.

The PWM frequency is obtained by this formula: $pwm_presc = sysclock / pwm_freq / 2 - 1$ Example for system clock of 50 MHz and desired pwm_freq of 20 KHz; $Pwm_presc = 50$ MHz / 20 KHz / 2 - 1 = 1249.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pwm_presc	R/W	0	PWM prescaler value: range is 02 ¹⁷ -1

Pwm_mdmax – PWM modulation limit

This register is used to limit the modulation duty cycle to desired value. The bit resolution is the same of pwm_presc.

The PWM modulator compares the PWM modulation value with the pwm_mdmax limit. In case of overflow the pwm_mdovf bit of motor status register is set.

It is highly recommended to set this register at a proper value in order to protect the gate power stage against too long high side driver time ON.

BIT NAME ACCESS RESET VALUE DESCRIPTION

© 2007-2022 QDeSys, All rights reserved.

1731		READ	0	Unassigned/reserved
016	pwm_mdmax	R/W	0	PWM modulation limit value: range is 0 2 ¹⁷ -1

Pwm_mdval – PWM modulation value

This read only register report the real time modulation value. The value is in range 0...pwm_mdmax with pwm_presc = 100%.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pwm_mdval	READ	0	PWM modulation limit value: range is 0 2 ¹⁷ -1

Pwm_minpw – PWM minimum pulse width

This UNSIGNED17 register is used discard narrow and potentially dangerous pulse width.

The time unit is FPGA system clock.

The value of register is evaluated by: $minpw_time * FPGA_clock - 2$.

The number "0" disable the feature.

Example: @ 100 MHz of FPGA clock, the value 98 will discard all pulses narrow than 1 microsecond.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pwm_minpw	R/W	0	PWM minimum pulse width 0=disable 1n=(2+value) * FPGA_tclock

Pwm_ctrl – PWM control register

This register selects various option of PWM modulaor.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
331		READ	0	Unassigned/reserved
2	cmmofs	R/W	0	3-Phase common mode offset
01	table	R/W	0	PWM modulation table selector

Rpfm_angofs – RPFM modulator angle offset

This SIGNED16 angle is added to RPFM modulator vector angle The angle resolution is 2^{16} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unassigned/reserved
015	rpfm_angofs	R/W	0	Angle value

Rpfm_ctrl – PFM control register

This register controls the PFM parameters setup.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION	
1431		READ	0	Unassigned/reserved	
				Null vector 7 hold mode:	
13	rpfm_v7h	R/W	0	0=vector 7 fall to vector 0	
				1=vector 7 hold for reduced switches	
				Null vector 0/7 transition mode:	
12	rpfm_v07n	R/W	0	0=vector 0	
				1=vector 0 or 7 is selected for reduced switches	
811	rpfm_mdpr	R/W	0	RPFM modulator prescaler 015	
07	rpfm_mdkd	R/W	0	RPMF modulator clock divider 0255	

Vector 0/7 nice (v07n)	Vector 7 hold (v7h)	Vector 0/7 modes
0	х	Vector 7 disable
1	0	Vector 7 only one shot
1	1	Symmetric mode

The modulator pulse width is defined by system clock divider. clock_divider = (rpfm3p_mdkd + 1) * (rpfm3p_mdpr + 1)

Example: IP core activation time = 3.2μ S, System clock = 62.5 MHz, Desired modulation pulse with = 6.4μ S, Rpfm_mdkd = 24rprm_mdpr = 15

Refer to RPFM specific IP datasheet for details and limitations.

deadtval – Gate unit dead time value

This register can be used to set value for gate unit dead time.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
831		READ	0	Unassigned/reserved
07	deadtval	R/W	255	Value for gate unit dead time

The value is not used in motor control IP. The signal is delivered to gate unit IP as-is.

gwswcnt - Gate unit switches counter

This register can be used to report the gate unit switches

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	gwswcnt	READ	-	Value from gate unit

The value is not used in motor control IP. The signal is reported from gate unit.

mosysfoc - system interface for FOC

QD_TDS_115_10 April 13, 2022

Product Specification

LUT ACCESS from HOST side

Lut_addr - LUT address register

This UNSIGNED32 register is used to address the LUT dual ported memory. The lower 16 bits (0..15) select the LUT element. The upper 3 bits (16..18) selects up to 8 LUTs. The remain 13 bits are unused.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1931		R/W	0	Unassigned/reserved
1618	lut_addr_sel	R/W	0	LUT selector: 07
015	lut_addr	R/W	0	LUT address register: 065535

Lut_addr_sel	LUT	description
0	NONE	Not implemented, void address
1	Hall Sensor IP	16 entries to configure angles
2	PWM waveforms	PWM modulator 4 waveforms of 256 entries each
3	BEMF linearization	1024 entries
4	RSV_0 linearization	1K,2K, 4K entries for resolver_0 linearization
5	RSV_1 linearization	1K,2K, 4K entries for resolver_1 linearization
67	n/a	Unassigned/reserved

NOTE: the value "0" shall be stored to "lut_addr" register when not used to reduce energy consumption.

hls_lut[0...15] - hall sensor LUT angles

This set of SIGNED18, 16 registers is used by the hall sensor IP to evaluate the motor electric angle. Look to specific IP description.

The angle resolution is 2^{18} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	hls_dprangle[015]	R/W	0	SIGNED18 angle

pwm_waveform[0...1023] - PWM waveform LUT

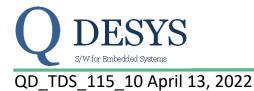
A set of four PWM waveform tables are defined using a single Xilinx BRAM 1024x18 primitive. The DPR can be accessed in R/W modes from host side and READ only from PWM IP side. The four tables are addressed by vector index range:

The lut_addr[9:8] address four PWM waveforms The lut_addr[7:0] address the specific waveform entry.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	Pwm_waveform[0255]	R/W	0	SIGNED18 value

Bemf_correction_lut[0...1023] - BEMF LUT module

The LUT is used to correct the motor BEMF non linearity. Each LUT entry correspond to about 2.84 degrees.


The neutral value is 65536 that correspond do gain = 1.

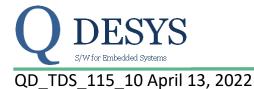
BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	Bemf_correction_lut[01024]	R/W	0	SIGNED18 value

rsv_0_lut/rsv_1_lut - correct resolve angle

The size of entry depends on resolver IP configuration. Implemented lengths are: 0,1K, 2K, 4K

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	Rsv_angle_lut[0n]	R/W	0	SIGNED18 value

mosysfoc - system interface for FOC


Product Specification

Execution time

Start event	End of execution	clock cycles ¹	Time @ 50 MHz	Time @ 100 MHz
Curr_sync	Pwm(2-phases)	188	3.76 μS	1.88 μS
Curr_sync	Pwm(3-phases)	201	4.04 μS	2.01 μS
Curr_sync	RPFM(3-phases)	172	3.44 μS	1.72 μS

¹ Unless otherwise noted.

^{© 2007-2022} QDeSys, All rights reserved.

Product Specification

Reference Documents

n/a

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

	y	Description
Date	Version	Description
16/09/2011	1.0	QDeSys first release.
19/11/2011	1.1	Added some registers. Modified Devices
		Utilization table. Removed pwm_dmod
		register.
23/12/2011	1.2	Correct execution time table. Update for
		new PI_control IP
23/03/2012	1.3	Updated registers
12/05/2012	1.4	Added Kintex 7 and Zynq support
11/07/2013	1.5	Position and speed loop control. BEMF feed
		forward compensation. Register map review.
13/05/2014	1.6	Hall sensor IP, double 3-phase modulator,
		enhanced feature for MRT IP.
14/02/2015	1.7	RPFM 3-levels modulator, Resolver sensor IP,
		extra trigger in current acquisition, direct
		access to dc_link and currents.
19/05/2016	1.8	Inclusion of analog preprocessing IP for
		offset, filtering and zero offset. Extend
		interface to motor board specific IP for
		diagnostic and probes.
6-Jan-17	1.9	Update speed loop, update current loop,
		remove bemf compensation
March 21, 2017	1.10	Remove acquisition feature. Optimized PI-
		control
August 6, 2017	1.11	Added PI current control probes, resolver ip
		update
20-Dec-17	1.12	Motor status register modification and PWM
		control register added.
June 1, 2018	1.13	Update interface for MRT acceleration
		scaling
June 27, 2019	1.14	Update control register

Revision History

^{© 2007-2022} QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

September 6,	1.15	Resolver pair poles ratio added.
2019		Correct some register definitions
April 23, 2021	1.16	Update IP interface and register description
April 13, 2022	1.17	Added several features and changed register
		map.

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION