

resolver

Product Specification

FUNCTION

Resolver sensor

VHDL File

resolver.vhd

Applicable Devices

Spartan3ADSP, Spartan6, 7-family, UltraScale+

Xilinx primitive used

Sub modules used

atan2.vhd dsp48a4m.vhd

Execution time

1,36 cycles

Introduction

The Resolver sensor IP core provides elaboration for the analog data acquired from resolver sensor. The output is the electric angle. It is provided of a linear interpolation unit to generate intermediate values between consecutive hall commutation events.

Product Specification

Detailed Description

The sensor itself and required electronic interface is expensive compared with hall sensors or incremental encoder, so the choice to use resolver is usually limited to robust application. The sensor works with analog sine wave signals so the positioning (distance from sensor to electronic), cabling quality and electronic interface shall be accurate to avoid noise injection on analog signals that can disturb the acquisition and influence the motor control software.

The resolver IP described in this document is developed to interface the common three signals sensor:

- 1) Exciter winding: a fixed frequency sine wave signal is generate by interface to resolver IP,
- 2) Cosine winding: direct output,
- 3) Sine winding: quadrature output.

The resolver characteristics: exciter frequency/amplitude, transfer ratio, pair poles, impedances of windings, maximum mechanical speed are defined in resolver documentation.

The resolver IP support the single pair poles resolver class in which a complete 360 degrees sine/cosine output wave for each mechanical revolution. This class is specific designed for high speed application.

The multi pair poles resolver class is not supported.

The choice of resolver type is strictly application depend. The supplied IP can operate at very high speed and the output angle precision is about 20 bits.

Resolver angle evaluation

The implemented algorithm is the following set of sub functions:

- 1) Evaluation angle by arctangent of y/x ratio. The atan2(y,x) function is used,
- 2) The evaluation is executed only if exciter value is positive,
- 3) the value is multiplied by motor *paipol* to convert mechanical to electrical angle,
- 4) the compensation *angofs* is added to correct sensor alignment.

The compact formula is the following:

Product Specification

angle = (atan2(secsin, seccos)) * m2rppk + angofs

The *m2rppk* is motor pair poles divided by resolver pair poles.

Example: with motor pair poles = 6 and resolver pair poles = 2 the m2rppk shall be set to 6/2=2.

The function is executed only if valid inputs *secsin*, *seccos* and *priexc*.

The test for validity is the following:

 $((abs(secsin) + abs(seccos)) > C_MINANV)$ and $(priexc \ge 0)$

The evaluation of angle is executed at every *start* event when *secsin* and *seccos* reach the peak value to minimize evaluation error.

In between two evaluation events, the IP integrates motor speed at every *start* trigger.

PARAMETERS

Parameter	Туре	Values	Default	Description
C_FAMILY	string	spartan3adsp	zynq	Xilinx FPGA Family name
		spartan6		
		artix7		
		kintex7		
		virtex7		
		zynq		
C_MINANV	Integer	165535	8192	Minimum value for valid test in input values

Product Specification

resolver

Product Specification

SIGNALS

Signal	I/O	Description	
clock IN		Clock (rising edge).	
reset IN		Reset the encoder. Active high.	
m2rppk[16:0] IN		Motor to Resolver Pair Poles ratio	
angofs[31:0] IN		Angle offset for alignment	
speed [31:0] IN		Motor electric speed	
start IN		Sync for interpolation	
priexc[17:0] IN		Resolver primary exciter. SIGNED18	
secsin[17:0] IN		Resolver secondary sine. SIGNED18	
seccos[17:0] IN R		Resolver secondary cosine. SIGNED18	
angle[31:0] OUT		Phase electrical angle. UNSIGNED32. 2 ³² =360 degree	

TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from the, Spartan 6 family and ZYNQ 7-family of FPGAs. The following tables lists the devices used for characterization using default IP parameters.

Device Utilization

Device Utilization Summary (estimated values)			
Logic Utilization	ZYNQ		
Number of Slice Registers	337		
Number of Slice LUTs	619		
Number of fully used LUT-FF pairs	272		
Number of Block RAM/FIFO	1		
Number of DSP48E1s	2		

Execution time

output	input	clock cycle ¹
angle[31:0]	start (evaluation angle)	36
angle[31:0]	start (integration)	1

¹ Unless otherwise noted.

^{© 2015-2018} QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Reference Documents

1. Xilinx LogiCORE IP DSP48 Macro V2.1 [DS754 March 1, 2011]

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

Date	Version	Description
14/02/2015	1.0	Initial QDeSys release
02/03/2015	1.1	QDeSys release
06/08/2017	1.2	Evaluation only on positive value of exciter
June 1, 2018	1.3	Rename paipol to m2rppk

Revision History

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION