

Product Specification

FUNCTION

Hall sensor

VHDL File

hallsnsp.vhd

Applicable Devices

Spartan3ADSP, Spartan6, Artix7, Kintex7, Virtex7, Zynq

Xilinx primitive used RAM16X1D

Sub modules used

ram16xyd4m.vhd

Execution time

6..10 clocks

Introduction

The Hall sensor IP core provides elaboration for the raw signals received from hall sensors on the motor. The output is the electric angle. It is provided of a linear interpolation unit to generate intermediate values between consecutive hall commutation events. It operates in single 3 sensors or 6 sensors. The angle position is defined by the DPR registers.

Detailed Description

The low cost hall sensors solution is largely used in BLDC motor for simple commutation six-steps control mode.

This module implements continuous angle value for the whole 360-degree rotation using the hall sensors commutation events to let FOC works in sinusoidal mode.

The IP is able to work with a single set of 3 hall sensors or with a double set of hall sensor.

The IP output is the motor electric angle in high-resolution format: 2³²=360 degrees (1~=83.82 nDeg)

The following table shows the 6-steps with angle correspondence and hall sensors levels. A double electric round is shows for better understanding the wrap between rounds.

Step	Angle	Phase-A	Phase-B	Phase-C
1	0	Н	L	L
2	60	Н	Н	L
3	120	L	Н	L
4	180	L	Н	Н
5	240	L	L	Н
6	300	Н	L	Н
1	0	Н	L	L
2	60	Н	Н	L
3	120	L	Н	L
4	180	L	Н	Н
5	240	L	L	Н
6	300	Н	L	Н

Figure 1 - the six steps

The 360-degree full electric round is divided in 6 steps of 60 degrees each, as consequence, the steps to angle function select a range.

Product Specification

QD_TDS_122_01 May 13, 2014

Step	Angle-min	Angle-center	Angle-max
1	330	0	30
2	30	60	90
3	90	120	150
4	150	180	210
5	210	240	270
6	270	300	330

Figure 2 - angle range for each step

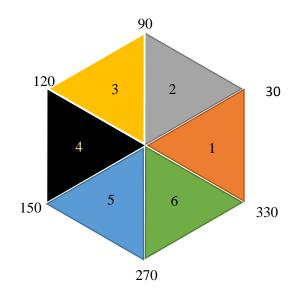


Figure 3 - the 6 sectors

The following diagram shown, on "Y" axe, the hall sensors digital levels. The sensors A,B and C corresponds to coil terminal of phases A,B and C.

On "X" axe the electric flux angle is displayed from -210 to 270 degrees in steps of 30 degrees.

Product	Specification
---------	---------------

-210	-18	-1	50	-120	-90) -6	50 -	-30	0	3	0 6	50 9	90	120	150	18	30	210	240	27	70
													•								А
																		-			В
																					C
																					C

Figure 4 - phase sequence

In case of negative level on hall sensor digital signal, the phase is opposite or +/- 180 degrees.

FOC driving concept

In FOC a conventional PWM can be used to produce pseudo analog outputs with high resolution angles (not limited to six values). As consequence the phases A,B and C can be driven to produce any Is vectors (for both modulo and angles controlled by FOC).

 $phase_A = \cos \alpha$ $phase_B = \cos(\alpha - 120)$ $phase_C = \cos(\alpha - 240)$

By convention, the main direction or forward direction is CCW because the angle increments correspond to anti clockwise rotation. As consequence the reverse direction is CW were angle decrements. The rotation refers to electric *Vs* vector were usually the motor rotor spin in CW direction.

Considering starting condition were driving motor winding at angle = 0° corresponding to step "1".

If rotor is free to move (no load applied), the magnetic will align to winding of phase-A.

In order to drive the motor CCW we need to move **Is** phase over flux phase of 90° (in case of CW the angle shall be -90°).

The rotor start rotating CCW because *Is* is orthogonal to flux. When flux angle is 30° (angle-max of step "1") the hall sensors detect angle 60°. This value correspond to 30° (angle-min of step "2"). The offset error is exactly -30°.

The following table shows the angle relation between flux, and hall sensors.

Direction	Step	Angle hall sensor	Angle flux
stall	16	(Step-1)*60	(Step-1)*60
CCW	16	(Step-1)*60	(Step-1)*60-30
CW	16	(Step-1)*60	(Step-1)*60+30

In order to reduce the electric noise (and corresponding mechanical noise, vibration and power loss), a linear interpolation is used to generate intermediate angles between two consecutive steps.

The linear interpolation is always enabled: it starts at valid hall sensor signal changes and it stop after *ctolim* clocks.

ANGLE VALUES

The DPR is organized in 16 locations of 16 bits angle value.

The angle resolution is $360/2^{16} \approx 5.493 \times 10^{-3}$ Deg

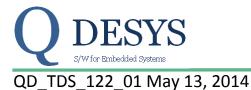
The following table shows the values used for first hall sensors set *hallsig[2:0]*, add value 8 to address location for second hall sensors set *hallsig[5:3]*.

Hallsig	Hallsig	Hallsig	DPR	STEP	ANGLE	USAGE
[2]	[1]	[0]	ADDRESS		VALUE	
-	-	-	0	-	-30	Forward Compensation
0	0	1	1	1	0	Angle for step 1
0	1	1	3	2	60	Angle for step 2
0	1	0	2	3	120	Angle for step 3
1	1	0	6	4	180	Angle for step 4
1	0	0	4	5	-120	Angle for step 5
1	0	1	5	6	-60	Angle for step 6
-	-	-	7	-	30	Backward Compensation

Figure 5 - memory format

Product Specification

The forward compensation is applied when *fwdir*=1 and *moving*=1.


The backward compensation is applied when *fwdir*=0 and *moving*=1.

Product Specification

PARAMETERS

Parameter	Туре	Values	Default	Description
	string	spartan3adsp	spartan3adsp	Xilinx FPGA Family name
		spartan6		
C FANALLY		artix7		
C_FAMILY		kintex7		
		virtex7		
		zynq		

hallsnsp – hall sensor

Product Specification

SIGNALS

Signal	I/O	Description		
clock	IN	Clock (rising edge).		
reset	IN	Reset the encoder. Active high.		
mem_we	IN	Memory write enable		
mem_addr[3:0]	IN	Memory address selector		
mem_din[15:0]	IN	Memory data input		
mem_dout[15:0]	OUT	Memory data output		
ctolim[19:0]	IN	UNSIGNED20 timeout to costing mode		
angtg	IN	Interpolator angle generation trigger		
speed[31:0]	IN	Motor speed		
fwdir	IN	1=Forward direction, 0=backward direction		
moving	IN	1=moving, 0=stop		
hallsig[5:0]	IN	Hall sensors		
angle[31:0]	OUT	Phase electrical angle. UNSIGNED32. 2 ³² =360 degree		
engev	OUT	Updated angle event		

Product Specification

TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from the Spartan-3 Generation, Spartan 6 family and Kintex 7-family of FPGAs. The following tables lists the devices used for characterization using default IP parameters.

Device Utilization

Device Utilization Summary (estimated values)						
Logic Utilization	Spartan3A DSP					
Number of Slices	139					
Number of Slice Flip Flops	175					
Number of 4 input LUTs	250					

Device Utilization Summary (estimated values)						
Logic Utilization	Spartan 6					
Number of Slice Registers	167					
Number of Slice LUTs	220					
Number of fully used LUT-FF pairs	137					

Device Utilization Summary (estimated values)						
Logic Utilization	Kintex 7					
Number of Slice Registers	166					
Number of Slice LUTs	218					
Number of fully used LUT-FF pairs	137					

Execution time

output	input	clock cycle ¹	
angle[31:0]	angtg	10	
angle[31:0]	hallsig[5:0]	6	

¹ Unless otherwise noted.

^{© 2014} QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Reference Documents

1. Xilinx LogiCORE IP DSP48 Macro V2.1 [DS754 March 1, 2011]

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

Revision History

Date	Version	Description
13/05/2014	1.0	Initial QDeSys release

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION