

QD_TDS_116_02 Dec 20, 2017

Product Specification

FUNCTION

Pulse Frequency Modulation (PFM).

VHDL File rpfm3phmod.vhd

Applicable Devices Spartan 3A DSP, Spartan 6, Kintex 7, Zynq

Xilinx primitive used DSP48A

RAMB16_S18_S18

Sub modules used

Dsp4mot.vhd bram1k18.vhd

Execution time

39 clock cycles

Introduction

This module implements a PFM modulator to control three-phase motors.

Product Specification

PARAMETERS

Parameter	Туре	Values	Default	Description
C FAMILY	string	spartan3adsp spartan6	spartan3adsp	Xilinx FPGA Family name
_		kintex7		

SIGNALS

Signal	I/O	Description
clock	IN	Clock (rising edge).
reset	IN	Reset. Active high.
dc_link[16:0]	IN	Motor power supply voltage from the A/D. UNSIGNED17.
start	IN	Start calculation. Active high. The pulse width must be of 1 clock cycle.
angle[31:0]	IN	Required angle. UNSIGNED32.
modulo[16:0]	IN	Modulation value. UNSIGNED17.
modclkdv[7:0]	IN	Modulator clock divider. UNSIGNED8.
modpresc[3:0]	IN	Modulator prescaler. UNSIGNED4.
vec07nice	IN	Vector 0/7 nice transition.
vec7hold	IN	Vector 7 hold.
coildrv[2:0]	OUT	PFM coil driver signals.
modsync	OUT	Modulator synchronization output
modzone[1:0]	OUT	Modulation mode/zone.
Inelabs	OUT	Computational engine working
inmodhs	OUT	High speed modulator working
finish	OUT	End of calculation. Computational engine finish work.

QD_TDS_116_02 Dec 20, 2017

Detailed Description

The RPFM modulator evaluate the *angle* and *modulo* of desired output Vs vector at each *start* trigger.

A programmable sigma delta modulator generates coils command at programmable rate. The minimum coil pulse width (low or high) is defined by *modclkdv* and *modpresc* signals.

The minimum pulse width time is: Pwmin = Tclk * (modclkdv + 1) * (modpresc + 1)Were *Tclk* is the main clock rate.

The high-speed *modclkdv* is used to divide the input *clock* rate. When the start signal is triggered, the counter is rounded to synchronize the modulator with the elaboration engine.

Example: <u>clock</u> rate = 50 MHz, Tclk = 20 ns desired <u>Pwmin</u> = 3.2 usec. The clock divider shall be 3.2 us / 20 ns = 160 The right values are modclkdv = 9, modpresc = 15; (9 + 1) * (15 + 1) = 160

Pulse width in clocks	Modclkdv	Modpresc
30	1	14
38	18	1
39	2	12
4096	255	15

The absolute minimum pulse width is 30 clocks. Do not set values lower than this limit.

The pulse width in range 30 to 38 will produce jitter in coil command. These values can be used for high-speed modulation when the small jitter is acceptable.

The values from 39 and up may produce jitter if the *start* cycle (clocks between two consecutive start activations) is not divisible by the pulse width in clocks.

Pulse width in clocks	Start cycle in clocks	Jitter
40	160	No
40	161	Yes

The clock divisors *modclkdv* and *modpresc* can be changed on the fly. The new values are used after competition of modulation cycle.

TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from the Spartan-3 Generation and Spartan 6 families of FPGAs. The following tables lists the devices used for characterization.

Device UtilizationDevice Utilization Summary (estimated values)Logic UtilizationZYNQ 7Number of Slice Registers401Number of Slice LUTs724Number of fully used LUT-FF pairs249Number of Block RAM/FIFO1Number of DSP48E1s1

Execution time

output	input	clock cycles ¹
finish	start	2028
modsync	start	39

QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

¹ Unless otherwise noted.

^{© 2013-2017} QDeSys, All rights reserved.

QD_TDS_116_02 Dec 20, 2017

Product Specification

Reference Documents

- 1. Xilinx LogiCORE IP DSP48 Macro V2.1 [DS754 March 1, 2011]
- 2. Xilinx LogiCORE IP Block Memory Generator V6.1 [DS512 March 1, 2011]

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

Revision History

Date	Version	Description
14/11/2011	1.0	QDeSys draft.
23/12/2011	1.1	Added parameters for FPGA family
10/07/2013	1.2	Description of pulse width programming
20/12/2017	1.3	Update module signal interface

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION