Product Specification

FUNCTION

System registers and interfaces for motor Field Oriented Control (FOC).

VHDL File

mosysfoc.vhd

Applicable Devices

Spartan3ADSP, Spartan6, 7-Family, UltraScale+

Xilinx primitive used

DSP48A/A1/E1 RAMB16_S18_S18

Sub modules used

motorfoc.vhd

Execution time

-

Introduction

This module is an interface toward the system registers of the motorfoc (motor Field Oriented Control) module. It implements the addressing of the registers and the read and write process.

Product Specification

PARAMETERS

Parameter	Туре	Values	Default	Description			
C_FAMILY	string	spartan3adsp spartan6 artix7 kintex7 virtex7 zynq	zynq	Xilinx FPGA Family name			
Inverter analog inputs							
C_INV_IN_MAP[11:0]	Std_logic_v ector	0x0000xFFF	0x083	Bit map enabled input channels: 0=IPHS_A 1=IPHS_B 2=IPHS_C 3=IBUS_X 4=VPHS_A 5=VPHS_B 6=VPHS_C 7=VBUS_X 8=VPHS_N			
C_INV_IN_NOT[11:0]	Std_logic_v ector	0511	0x000	Bit map inverted channels. Bit values as per C_INV_IN_MAP			
C_INV_OFSV_MODE	Integer	03	1	Offset set mode functions bit definition: 0=Self-Zero 1=S/W registers			
C_INV_OVER_IPHS	integer	01	1	Overcurrent detection motor phases			
C_INV_OVER_IBUS	integer	01	1	Overcurrent detection dc_link			
C_INV_FILTER	Integer	01	1	2nd order LPF inputs			
C_CLARKE_NPHS	Integer	0,2,3	3	Clarke transform input phases. 0=transparent (2-phases only for bipolar stepper motor) 2=2-phases used in 3-phases motor 3=3-phases used in 3-phases motor			

C_PWM_MODULATOR integer C_RPFM_MODULATOR integer integer O2 1 Include RPFM modulator IP C_RPFM_3_LEVEL integer O1 1 RPFM 3-level extension C_RPFM_TPNC integer O1 1 RPFM 3-level T-PNC variant C_SMO_EVAL integer O1 1 Include SMO Position Estimator IP C_SPD_EVAL integer O1 1 Include Speed Measurement IP C_SPEED_CTRL Integer O1 Include speed loop
C_RPFM_MODULATOR C_RPFM_3_LEVEL integer O1 C_RPFM_TPNC integer O1 1 RPFM 3-level extension RPFM 3-level T-PNC variant C_SMO_EVAL integer O1 1 Include SMO Position Estimator IP C_SPD_EVAL integer O1 1 Include Speed Measurement IP
C_RPFM_3_LEVEL integer 01 1 RPFM 3-level extension C_RPFM_TPNC integer 01 1 RPFM 3-level T-PNC variant C_SMO_EVAL integer 01 1 Include SMO Position Estimator IP C_SPD_EVAL integer 01 1 Include Speed Measurement IP
C_RPFM_3_LEVEL extension C_RPFM_TPNC integer 01 1 RPFM 3-level T-PNC variant C_SMO_EVAL integer 01 1 Include SMO Position Estimator IP C_SPD_EVAL integer 01 1 Include Speed Measurement IP
C_RPFM_TPNC integer 01 1 RPFM 3-level T-PNC variant C_SMO_EVAL integer 01 1 Include SMO Position Estimator IP C_SPD_EVAL integer 01 1 Include Speed Measurement IP
C_RPFM_TPNC variant C_SMO_EVAL integer 01 1 Include SMO Position Estimator IP C_SPD_EVAL integer 01 1 Include Speed Measurement IP
C_SMO_EVAL Estimator IP C_SPD_EVAL integer 01 1 Include Speed Measurement IP
C_SMO_EVAL Estimator IP C_SPD_EVAL integer 01 1 Include Speed Measurement IP
C_SPD_EVAL Measurement IP
— — Measurement IP
C_SPEED_CTRL Integer 01 1 Include speed loop
· · · ·
C RESOLVER integer 01 1 Include resolver
- sensor IP
C_RSV_MINANV integer 165536 8192 Resolver Minimum
Input Values
O HAMETICOD CONTROL OF A CONTROL OF THE CONTROL OF
C_HALLSENSOR integer 01 1 Include hall sensor IP
C_ENCODER Integer 01 2 Include enhanced 23 wire encoder IP
Integer 02 2 Scalar mode rotor
angle IP: 0=no,
1=angle undate
C_MANROT 2=enhanced with
ramp and 2 nd order
filter
Integer 816 16 Base 2 logarithm of
C_MRT_ACCMAX_DLN2 MRT acceleration
limiter
integer 2226 24 Base 2 logarithm of
C_SMO_ZS_DLN2 proportional error
integer 2630 28 Base 2 logarithm
integer 2630 28 Base 2 logarithm C_SMO_F2_DLN2 divider use to eval K o
2 nd LPF
Integer 0n 1 Base 2 logarithm of
C_SLP_PRO_DLN2 speed loop proportion
error regulator

C_SLP_INT_DLN2	Integer	0.n	5	Base 2 logarithm of speed loop integrative error regulator
C_SLP_INDWP_DLN2	Integer	0.n	1	Base 2 logarithm of speed loop integrative error regulator for anti windup
C_SLP_INDWP_KDIV	Integer	0.n	1	Base 2 logarithm of speed loop integrative error regulator for anti windup
C_ISOVERFLOW_CMAX	integer	115	1	Current modulo overflow counter limit
C_PI_ERPRO_DLN2	integer	0n	12	Base 2 logarithm of current loop PI proportional error divisor
C_PI_ERINT_DLN2	integer	0n	18	Base 2 logarithm of current loop PI integrative error divisor

Product Specification

SIGNALS

Signal	1/0	Description		
clock	IN	Clock (rising edge).		
reset	IN	Reset. Active high.		
host_en	IN	Host access enable. Active high.		
host_we	IN	Host write access enable. Active high.		
host_addr[31:0]	IN	Host memory address.		
host_din[31:0]	IN	Host data bus write word32		
host_dout[31:0]	OUT	Host data read word32		
host_ack	OUT	Host data transfer acknowledge		
ext_angle[31:0]	IN	External rotor position sensor interface		
Analog resolver sensor inputs for	positio	on evaluation (see QD_TDS_124 for description)		
rsv_priexc[17:0]	IN	Resolver primary winding exciter		
rsv_secsin[17:0]	IN	Resolver secondary winding sine		
rsv_seccos[17:0]	IN	Resolver secondary winding cosine		
Hall sensor digital signals pos	ition e	valuation (see QD_TDS_122 for description)		
hls_hallsig[5:0]	IN	Hall sensors digital inputs		
Encoder position evaluation (see QD_TDS_101 for more details)		(see QD_TDS_101 for more details)		
enc_cha	IN	Encoder channel A.		
enc_chb	IN	Encoder channel B.		
enc_chi	IN	Encoder channel index.		
Inverter	analo	g, values are SIGNED18.		
acq_iphs_a[17:0]	IN	Motor current Phase-A		
acq_iphs_b[17:0]	IN	Motor current Phase-B		
acq_iphs_c[17:0]	IN	Motor current Phase-C		
acq_ibus_x[17:0]	IN	Dc_link current		
acq_vphs_a[17:0]	IN	Motor voltage Phase-A		
acq_vphs_b[17:0]	IN	Motor voltage Phase-B		
acq_vphs_c[17:0]	IN	Motor voltage Phase-C		
acq_vbus_x[17:0]	IN	Dc_link voltage		
acq_sync	IN	Acquisition synchronization.		
	alog of	fset, values are SIGNED18.		
ofs_iphs_a[17:0]	OUT	Motor current Phase-A		
ofs_iphs_b[17:0]	OUT	Motor current Phase-B		
ofs_iphs_c[17:0]	OUT	Motor current Phase-C		
ofs_ibus_x[17:0]	OUT	Dc_link current		
· ·		·		

ofs_vphs_a[17:0]	OUT	Motor voltage Phase-A	
ofs_vphs_b[17:0]	OUT	Motor voltage Phase-B	
ofs_vphs_c[17:0]	OUT	Motor voltage Phase-C	
ofs_vbus_x[17:0]	OUT	Dc_link voltage	
Inverter analo	og norn	nalized, values are SIGNED18.	
nrm_iphs_a[17:0]	OUT	Motor current Phase-A	
nrm_iphs_b[17:0]	OUT	Motor current Phase-B	
nrm_iphs_c[17:0]	OUT	Motor current Phase-C	
nrm_ibus_x[17:0]	OUT	Dc_link current	
nrm_vphs_a[17:0]	OUT	Motor voltage Phase-A	
nrm_vphs_b[17:0]	OUT	Motor voltage Phase-B	
nrm_vphs_c[17:0]	OUT	Motor voltage Phase-C	
nrm_vbus_x[17:0]	OUT	Dc_link voltage	
nrm_sync	OUT	Data synchronization.	
Inverter and	alog filt	ered, values are SIGNED18.	
flt_iphs_a[17:0]	OUT	Motor current Phase-A	
flt_iphs_b[17:0]	OUT	Motor current Phase-B	
flt_iphs_c[17:0]	OUT	Motor current Phase-C	
flt_ibus_x[17:0]	OUT	Dc_link current	
flt_vphs_a[17:0]	OUT	Motor voltage Phase-A	
flt_vphs_b[17:0]	OUT	Motor voltage Phase-B	
flt_vphs_c[17:0]	OUT	Motor voltage Phase-C	
flt_vbus_x[17:0]	OUT	Dc_link voltage	
flt_sync	OUT	Data synchronization.	
ovi_iphs_a	Out	Motor Phase-A overcurrent	
ovi_iphs_b	Out	Motor Phase-B overcurrent	
ovi_iphs_b	Out	Motor Phase-C overcurrent	
ovi_ibus_x	Out	DC_link overcurrent	
Ismodover	Out	Is modulo overcurrent	
generator	IN	0=drive mode, 1=generator mode	
modtype[0:0]	IN	Selected modulator 0=PWM, 1=RPFM	
modlevels[0:0]	IN	Modulator levels 0=2-levels, 1=3-levels	
	IN	Three-phase motor selection flag. Active high	
is3phases		("1").	
PWI	Л 2-pha	ases, 2-levels output	
pwm2p_l2c1w1 [1:0]	OUT	coil-1, winding-1	
pwm2p_l2c2w1 [1:0]	OUT	coil-2, winding-1	
pwm2p_l2c1w2 [1:0]	OUT	coil-1, winding-2	
pwm2p_l2c2w2 [1:0]	OUT	coil-2, winding-2	
<u> </u>			

num2n 120ma	OUT	Cuna signal	
pwm2p_l2sync	OUT	Sync signal	
	0UT	oses, 2-levels output Coil 321, winding-1	
pwm3p_l2cxw1 [2:0] pwm3p_l2cxw2 [2:0]	OUT	Coil 321, winding-1 Coil 321, winding-2	
pwm3p_l2cxw2 [2:0]	OUT	Sync signal	
		ases, 2-levels output	
rpfm3p 2cxw1 [2:0]	OUT	•	
rpfm3p_l2cxw2 [2:0]	OUT	Coil 321, winding-1 Coil 321, winding-2	
rpfm3p_l2sync	OUT	Sync signal	
· · · · · = · ·		ases, 3-levels output	
rpfm3p_l3c1w1[1:0]	OUT	Coil1, winding-1	
rpfm3p_l3c2w1[1:0]	OUT	Coil2, winding-1	
rpfm3p_l3c3w1[1:0]	OUT	Coil3, winding-1	
rpfm3p_l3c1w2[1:0]	OUT	Coil1, winding-2	
rpfm3p_l3c2w2[1:0]	OUT	Coil2, winding-2	
rpfm3p_l3c3w2[1:0]	OUT	Coil3, winding-2	
rpfm3p_l3sync	OUT	Sync signal	
rpinisp_issync	001	Sync signal	
Deadtval[7:0]	Out	UNSIGNED8 gate unit dead time valid code	
Deddtvai[7.0]	Out	ONSIGNEDO gate anie acaa time vana code	
	IN	UNSIGNED32, gate unit switches diagnostic	
Gwswcnt[31:0]		counter	
Hwfail	IN	Gate unit h/w failure	
Hwkill IN		Gate unit KILL input (fast cut-off)	
coilgear	OUT	Coil signal gear	
coilenab	OUT	Coil signals enable	
syserr	OUT	Motor control IP system error	
reseterr	OUT	Reset latched errors	
zerocurr	OUT	Zero current offset	
zerovbusx	Out	Zero DC_link offset command	
zerovphsx	Out	Zero motor phases command	
	Scope	/ probe signals	
pix_setval[17:0]	OUT	SIGNED18. Current control probe X-set	
piy_setval[17:0]	OUT	SIGNED18. Current control probe Y-set	
pix_fbkval[17:0]	OUT	SIGNED18. Current control probe X-feedback	
piy_fbkval[17:0]	OUT	SIGNED18. Current control probe Y-feedback	
pix_outval[17:0]	OUT	SIGNED18. Current control probe X-output	
piy_outval[17:0]	OUT	SIGNED18. Current control probe Y-output	

OUT	UNSIGNED17, Vs module
OUT	Vs angle
OUT	UNSIGNED17, Is module
OUT	Is angle
OUT	UNSIGNED17, SMO Zs module
OUT	SMO Zs angle
OUT	Scalar mode IP angle
OUT	Incremental encoder angle
OUT	Hall sensors angle
OUT	Resolver angle
OUT	SMO angle
OUT	Rotor angle
	OUT OUT OUT OUT OUT OUT OUT OUT OUT

Product Specification

Detailed Description

This module implements the system register for the set up and run time execution of the *motorfoc* module. The address space of the registers is divided in 4 zones. In the table below are reported the zones.

Address range	Zone type
0x00000 - 0x01FFF	Registers
0x02000 - 0x03FFF	Hall sensors angles DPR
0x04000 - 0x05FFF	-
0x06000 - 0x07FFF	-
0x08000 - 0x0FFFF	PWM waveform tables

In the following section is reported the map of the registers used by the module. All registers are 32 bits size. The register offset is "register index" * 4.

Registers description table

	REGISTERS DESCRIPTION						
Address offset	Register index	Register name	Access	Description			
0x00000	0	ip_ident	READ	Motor control IP identification			
	1	tsclocks	READ	Measured cycle time (clocks)			
	2	motor_control	R/W	Motor control			
	3	motor_status	READ	Motor status / event			
		Read inverter inpu	t values				
	4	val_iphs_a	READ	Current phase-A			
	5	val_iphs_b	READ	Current phase-B			
	6	val_iphs_c	READ	Current phase-C			
	7	val_ibus_x	READ	Current DC_link			
	8	val_vphs_a	READ	Voltage phase-A			
	9	val_vphs_b	READ	Voltage phase-B			
	10	val_vphs_c	READ	Voltage phase-C			
	11	val_vbus_x	READ	Voltage DC_link			
	12	val_vphs_n	READ	Voltage neutral			
		Read and write inverter	offset va	lues			
	13	ofs_iphs_a	R/W	Current phase-A			
	14	ofs_iphs_b	R/W	Current phase-B			
	15	ofs_iphs_c	R/W	Current phase-C			
	16	ofs_ibus_x	R/W	Current DC_link			
	17	ofs_vphs_a	R/W	Voltage phase-A			
	18	ofs_vphs_b	R/W	Voltage phase-B			
	19	ofs_vphs_c	R/W	Voltage phase-C			

	REGISTERS DESCRIPTION						
Address offset	Register index	Register name	Access	Description			
	20	ofs_vbus_x	R/W	Voltage DC_link			
	21	ofs_vphs_n	R/W	Voltage neutral			
	22	xbus_fk1	R/W	dc_link LPFT1 #1 const			
	23	xbus_fk2	R/W	dc_link LPFT1 #2 const			
			- 6				
	24	xphs_fk1	R/W	Phases LPFT1 #1 const			
	25	xphs_fk2	R/W	Phases LPFT1 #2 const			
	2.0	ihus limit	D /14/	Do link ourrent limit			
	26	ibus_limit	R/W	Dc_link current limit			
	27	iphs_limit	R/W	Phases current limit			
	28	ismodmax	R/W	Is current limit			
	20	Ismountax	71,700	is current innit			
	29	ismodval	READ	Is real time current value			
	30	isangval	READ	Is real time angle value			
			1				
	31	vsmodval	READ	Vs real time modulo			
	32	vsangval	READ	Vs real time angle			
	33	rot_angdef	R/W	Rotor position reset angle			
	34	rot_angle	READ	Rotor position angle			
		Speed evalu					
	35	spd_fktau1	R/W	Speed evaluation LPFT1 #1 const			
	36	spd_fktau2	R/W	Speed evaluation LPFT1 #2 const			
	37	spd_speed	READ	Speed evaluation current speed			
		CMO Position o		un minto un			
	20	SMO Position e		1			
	38 39	smo_vs_mult smo_is_mult	R/W R/W	Position Evaluation Vs multiplier Position Evaluation Is multiplier			
	40	smo_is_muit smo_zs_max	R/W	Position Evaluation is multiplier Position Eval BEMF max error			
	40	smo_es1_kflt	R/W	Position Eval BEMF LPF1 #1			
	42	smo_es2_kflo	R/W	Position Eval BEMF LPF1 #2 base			
	43	smo_es2_kfmx	R/W	Position Eval BEMF LPF1 #2 mult			
	44	smo_es2_kflt	READ	Position Eval BEMF LPF1 #2			
	45	smo_angofs	R/W	Position Eval angle offset			
	46	smo_bemf_p	READ	Position Eval BEMF Angle			
	46	smo_bemf_m	READ	Position Eval BEMF Modulo			
	48	smo_angle	READ	Position Eval Angle			

REGISTERS DESCRIPTION					
Address offset	Register index	Register name	Access	Description	
	49	pos_position	READ	Low resolution current position	
		Speed Lo	op Contr	ol	
	50	slp_spdset	R/W	Speed set point	
	51	slp_kmpro	R/W	Proportional gain	
	52	slp_kmint	R/W	Integrative gain	
	53	slp_outlim	R/W	Current limit	
	54	slp_kmultx	R/W	Current X multiplier	
	55	slp_kmulty	R/W	Current Y multiplier	
	56	paipol	R/W	Motor pair poles (1n)	
		Ext	ernal roto	or angle sensor	
	57	ext_angle	READ	Enternal angle	
		Res	olver ang	le sensor	
	58	rsv_angofs	R/W	Resolver angle offset	
	59	rsv_angle	READ	Resolver angle	
		Hall	sensor		
	60	hls_ctolim	R/W	Counter timeout limit	
	61	hls_angle	READ	Hall sensor angle	
		Incremen	tal encod	ler	
	62	enc_index	READ	Encoder index	
	63	enc_phase	READ	Encoder phase	
	64	enc_phcpt	READ	Encoder phase hold	
	65	enc_cyprnd	R/W	Cycles per round	
	66	one angule	R/W	Encoder angle increments per	
		enc_angphs		phase	
	67	enc_angle	READ	Encoder Electric rotor angle	
		Manual	otor ang	le	
	68		R/W	Encoder simulator angle	
		mrt_speed		increments per netmot s-link	
				packet (see detailed description)	
	69	mrt_accmax	R/W	Acceleration limit	
	70	mrt_fktau1	R/W	First LPF1 filter speed	
	71	mrt_fktau2	R/W	Second LPF1 filter speed	
	72	mrt_spdout	READ	Speed set	
	73	mrt_angle	READ	Encoder simulator Electric rotor	
	Pi_contro	ol regulator for X_coordinate o	or D_fram	e and Y_coordinate or Q_frame	
	74	pi_setvalx	R/W	Current loop X setpoint	
	75	pi_setvaly	R/W	Current loop Y setpoint	
		· · · · · · · · · · · · · · · · · · ·			

	REGISTERS DESCRIPTION					
Address offset	Register index	Register name	Access	Description		
	76	pi_kmpro	R/W	PI proportional gain multiplier		
	77	pi_kmint	R/W	PI integrative error gain multiplier		
		Camman				
	70	Common				
	78	mod2angskw	R/W	Second modoulator angle skew		
		PWM n	ı nodulator	•		
	79	pwm kmod	R/W	PWM gain multiplier		
	80	pwm presc	R/W	PWM prescaler		
	81	pwm_mdmax	R/W	PWM modulation limit		
	82	pwm_mdval	READ	PWM real time modulation value		
	83	pwm_ctrl	R/W	PWM control register		
		RPFM n	l nodulator	<u> </u>		
	84	rpfm3p_ctrl	R/W	PFM control register		
	85	deadtval	R/W	Gate unit dead time value		
	86	gwswcnt	R	Gate unit switches counter		
		Hall Sensors angl	es I I IT			
0x02000	015	hls_dprangle[015]	R/W	Angles LUT for hall sensor IP		
	T	PWM table addr				
0x08000	0255	pwm_waveform_0[0255]	R/W	PWM waveform table 0		
	256511	pwm_waveform_1[0255]	R/W	PWM waveform table 1		
	512767	pwm_waveform_2[0255]	R/W	PWM waveform table 2		
	7681023	pwm_waveform_3[0255]	R/W	PWM waveform table 3		

Product Specification

Motor_ip_ident - Motor IP identification register

This register reports the IP identification register.

The current value is for test purpose only.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
2431	Ip_id_code	READ	1	Code
1623	Ip_id_majv	READ	1	Major version
815	Ip_id_minv	READ	2	Minor version
07	Ip_id_hscrt	READ	97	H/W S/W compatibility

TSclocks - FOC clock cycles

This register reports the number of system clocks between two consecutive FOC activation

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1231		READ	0	Unused/reserved
110	tsclocks	READ	-	System clocks on FOC cycle

Motor_control - Motor control register

This register controls the FOC IP.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
2731		READ	0	Unused/reserved
26	zerovphsx	R/W	0	Zero motor voltage phases (0->1 only)
25	zerovbusx	R/W	0	Zero dc_link voltage (0->1 only)
24	reseterr	R/W	0	Reset latched error
23	zerocurr	R/W	0	Zero current offset command (0->1 only)
22	slp_mrt2spd	R/W	0	Pos&Speed: MRT to Speed loop link
21	slp_spd2trq	R/W	0	Speed loop feeds the current loop
20	enc_xmcha	R/W	0	Encoder CH-A match for index event
19	enc_xmchb	R/W	0	Encoder CH-B match for index event
18	enc_xmchi	R/W	0	Encoder CH-I match for index event
17	enc_inten	R/W	0	Encoder interpolator enable
16	enc_rstang	R/W	0	Encoder electric rotor angle evaluation reset control
				1=reset-lock, 0=running
15	mrt_inhfitl	R/W	0	Scalar loop inhibit filter
14	mrt_rstang	R/W	0	Encoder emulator electric rotor angle evaluation
				reset control
				1=reset-lock, 0=running

Product Specification

13	smo_rstang	R/W	0	Position Eval electric rotor angle reset control
				1=reset-lock, 0=running
12	fbk_angdef	R/W	0	Default angle selector
				0=default register
				1=rot_angle feedback
11	pi_deafmd	R/W	0	PI current feedback control
				1=ignore feedback, 0=use feedback
10	is3phases	R/W	0	1=3-phase motor, 0=stepper motor
98	modlevels	R/W	0	0=2-levels, 1=3-levels
74	rot_select	R/W	0	Rotor selector angle:
				0=manual: "rot_angdef" register,
				1=MRT : scalar mode,
				2=ENC: incremental encoder,
				3=SMO: sliding mode observer,
				4=HLS : hall sensors,
				5=RSV : resolver,
				6=EXT : external sensor
32	modtype	R/W	0	Modulator selector request
				0=PWM
				1=RPFM
1		READ	0	Unused/reserved
0	coilenab	R/W	0	Coil enable
				1=IP control, 0=drive LOW

Motor_status - Motor status register

This register report FOC status and let reset of latched events.

The read access freeze some status registers for atomic read.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved
16	hwkill	READ	0	Kill input from Gate unit
15	hwfail	READ	0	H/W failure from Gate unit
14	ovi_iphs_a	READ	0	Overcurrent motor Phase-A
13	ovi_iphs_b	READ	0	Overcurrent motor Phase-B
12	ovi_iphs_c	READ	0	Overcurrent motor Phase-C
11	ovi_ibus_x	READ	0	Overcurrent dc_link
10	syserr	READ	0	Global system error
9	spare_9	READ	0	-
8	spare_8	READ	0	-
7	spare_7	READ	0	-
6.5	rnfm am d	DEAD	0	RPFM modulation zone
65	rpfmzmd	READ	0	0=IDLE (not operational) 1=Sinusoidal/Extended sinusoidal(linear zone)

Product Specification

				2=Hexagon zone (partial saturation) 3=Saturation zone (square wave or six step)
4	modtype0	READ	0	Modulator type in use 0=PWM, 1=RPFM
3	spd_fwdir	READ	0	speed evaluation moving direction 1=FWD, 0=REV
2	spd_moving	READ	0	speed evaluation moving status 1=moving, 0=still
1	pwm_mdovf	READ	0	PWM modulation overflow
0	Ismodover	READ	0	Is current overflow. The 1=overflow will stop the motor to a safe condition. The event reset requires switch off the motor writing "0" in coil enable control register bit

Inverter values from A/D acquisition.

This register returns the voltage and current of motor phases and dc-link. The values are normalized as SIGNED18

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unused/reserved
	val_iphs_a			Motor Phase-A current
	val_iphs_b			Motor Phase-B current
	val_iphs_c			Motor Phase-C current
	val_ibus_x			Dc_link current
017	val_vphs_a	READ	0	Motor Phase-A voltage
	val_vphs_b			Motor Phase-B voltage
	val_vphs_c			Motor Phase-C voltage
	val_vbus_x			Dc_link voltage
	val_vphs_n			Motor neutral voltage

The value is SIGNED18. For external representation in "Amperes" and "Volts", multiply by proper gain floating point constant.

BIT NUMBER/INDEX	INVERTER ANALOG CHANNEL
0	IPHS_A
1	IPHS_B
2	IPHS_C
3	IBUS_X
4	VPHS_A
5	VPHS_B
6	VPHS_C
7	VBUS_X
8	VPHS_N

Product Specification

The configuration constant C_INV_IN_MAP is used to define the number of active channel. The configuration constant C_INV_IN_NOT is used to force two complement values (for negative inputs). Both constant are integer bit mask where each bit refer a specific analog channel. The default value 131 (decimal) in C_INV_IN_MAP correspond to binary value '01000011b'. This means the IPHS_A, IPHS_B and VBUS_X are implemented.

Inverter offset value.

This register let set/get the offset values for zero calibration for each analog channel. The values are normalized as SIGNED18

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unused/reserved
	ofs_iphs_a			Motor Phase-A current
	ofs_iphs_b			Motor Phase-B current
	ofs_iphs_c			Motor Phase-C current
	ofs_ibus_x			Dc_link current
017	ofs_vphs_a	R/W	131072	Motor Phase-A voltage
	ofs_vphs_b			Motor Phase-B voltage
	ofs_vphs_c			Motor Phase-C voltage
	ofs_vbus_x			Dc_link voltage
	ofs_vphs_n			Motor neutral voltage

These register let zero calibration of analog acquisition system.

Two method of zero calibration are allowed if enabled in C_INV_OFSV_MODE.

BIT	NAME	DEFAULT	DESCRIPTION
1	ZERO_SW	0	Individual offset register can be set
0	ZERO_AUTO	1	Automatic zero function on command

xbus_fk1, xbus_fk2 - DC_LINK LPF1 parameter register

These registers are used to setup the cutting frequency of LPF1 used to filter the dc_link both voltage and current.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved
016	xbus_fk1/xbus_fk2	R/W	0	LPF1 multiplier constant in range 02 ¹⁷⁻¹

Product Specification

A second order filter is implemented using two LPF1 first order filters in cascade configuration.

The xbus_fk1 is used to configure the first filter, and the xbus_fk2 is used to configure the second filter.

The filter IP is enabled if C_INV_FILTER = 1.

xphs_fk1, xphs_fk2 - Motor phases LPF1 parameter register

These registers are used to setup the cutting frequency of LPF1 used to filter the motor phases both voltage and current.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved
016	xphs_fk1/xphs_fk2	R/W	0	LPF1 multiplier constant in range 02 ¹⁷⁻¹

A second order filter is implemented using two LPF1 first order filters in cascade configuration.

The xphs_fk1 is used to configure the first filter, and the xphs_fk2 is used to configure the second filter.

The filter IP is enabled if C_INV_FILTER = 1.

Ibus_limit - current limit for dc_link

The register is used to set the dc_link current limit to protect the inverter and dc_link source from overcurrent.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	ibus_limit	R/W	0	dc_link current limit

Iphs_limit - current limit for motor phases

The register is used to set the motor phases current limit to protect the inverter, and the motor from overcurrent.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	iphs_limit	R/W	0	Motor phases current limit

Product Specification

Ismodmax - Is current limit

The register is used to set the Is current limit to protect the motor against overcurrent.

The FOC IP monitor the Is current and compare the value with the defined limit. In case of overflow the ismodover bit is set into motor status register: the motor will stop immediately and coil driver will be set to neutral position.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	ismodmax	R/W	0	Is current limit

Ismodval - Is current value

The read only register report the real time Is current modulo.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	ismodval	READ	0	Is current modulo

Isangval - Is current angle

The read only register report the real time Is current angle. The value resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	isangval	READ	0	Is current angle

Vsmodval - Vs voltage value

This read only UNSIGNED17 register reports the real time Vs voltage modulo. The bit resolution depend on h/w implementation for proper interface with final motulator

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	vsmodval	READ	0	Vs voltage modulo

Vsangval - Vs voltage angle

This read only register reports the real time Vs voltage angle. The value resolution is 2^{32} =360 degrees.

Product Specification

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	vsangval	READ	0	Vs voltage angle

rot_angdef - rotor initial angle

This register is used to set the initial angle value for all position IP cores. The value is defined as electric rotor angle. The value is loaded at h/w and manual reset of IP. The register is UNSIGNED32 value with 2^{32} =360 degrees. With number of pair poles = 1 the angle correspond to mechanical rotor angle.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	rot_angdef	R/W	0	Initial angle for position IP cores

rot_angle - rotor angle

This read only register contains the real time angle generated by IP. The angle resolution is 2^{32} =360 degrees. The value is loaded from selected IP cores according to rot_selector defined in motor control register. In case of IP core reset, rot_angle assumes the value according to rot_selector and fbk_angdef values.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	rot_angle	READ	0	Angle value

Spd_fktau1, spd_fktau2 - Speed evaluation LPF1 parameter register

These registers are used to setup the cutting frequency of LPF1 used in speed evaluation IP core.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unused/reserved
016	Spd_fktau1/spd_fktau2	R/W	0	LPF1 multiplier constant in range 02 ¹⁷⁻¹

A second order filter is implemented using two LPF1 first order filters in cascade configuration. The spd_fktau1 is used to configure the first filter, and the spd_fktau2 is used to configure the second filter.

The LPF1 formula is the following: Y = Y + (X - Y) * K

Where:

Y = internal accumulator and result;

X = new current sample;

K = error weight in range 0...1.

Product Specification

The spd_fktau1/2 register is an UNSIGNED17 value in range 0...131071 for a corresponding: $K = [0/2^{17}...(2^{17}-1)/2^{17}].$

The filter function is executed for every IP activation. Refer to LPF1 IP for details.

Spd_speed - Speed evaluation current speed register

It counts the index rising edges pulses or motor revolutions. This register is unipolar (unsigned) and is incremented regardless of rotation direction (forward or reverse).

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	spd_speed	READ	0	SIGNED32 speed value

The speed is defined as angle/time where:

Angle is the register content in range -2³¹..2³¹-1 that correspond to: A = value / 2³² * 2 π The time is defined by IP core activation time.

Example: the value 1374390 with 3.2 μ Sec of IP core activation time correspond to about 100 Hz NOTE: The speed is defined as electric speed.

smo_vs_mult - position evaluation Vs multiplier

The value is an UNSIGNED32 multiplier used by the position evaluation IP core. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	smo_vs_mult	R/W	0	Vs multiplier

smo_is_mult - position evaluation Is multiplier

The value is an UNSIGNED32 multiplier used by the position evaluation IP core. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	smo_is_mult	R/W	0	Is multiplier

smo_zs_max - position evaluation maximum error

The value is an UNSIGNED17 that represents the absolute maximum error in the BEMF evaluation. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo zs max	R/W	0	Absolute max BEMF error

Product Specification

smo_es1_kflt - position evaluation BEMF LPF1 #1

The value is an UNSIGNED17 that sets up the first LPF1 used to evaluate the BEMF. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_es1_kflt	R/W	0	LFP1 #1 filter coefficient for BEMF evaluation

smo_es2_kflo - position evaluation BEMF LPF1 #2

The value is an UNSIGNED17 that sets up the second LPF1 used to evaluate the BEMF.

The value is used to define the minimum Fcut for speed=0.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_es2_kflo	R/W	0	LFP1 #2 filter coefficient for BEMF evaluation

smo_es2_kfmx - position evaluation BEMF LPF1 #2

The value is an UNSIGNED17 that sets up the second LPF1 used to evaluate the BEMF.

The value is used to extend the Fcut according speed.

Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_es2_kfmx	R/W	0	LFP1 #2 filter coefficient for BEMF evaluation

smo_es2_kflt - position evaluation BEMF LPF1 #2

The value is an UNSIGNED17 that sets up the second LPF1 used to evaluate the BEMF. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_es2_kflt	READ	0	LFP1 #2 filter coefficient for BEMF evaluation

smo_angofs - position evaluation angle offset

The value is an SIGNED16 angle value in range $[-\pi..\pi]$ to compensate the bemf output angle on SMO.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1631		READ	0	Unassigned/reserved
015	smo_angofs	R/W	0	Angle offset

Product Specification

smo_bemf_p - position evaluation BEMF angle

Read only UNSIGNED32 register. It represents the BEMF vector angle. The value 2^{32} corresponds to 360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	smo_bemf_p	READ	0	BEMF vector phase

smo_bemf_m - position evaluation BEMF modulo

Read only UNSIGNED17 register. It represents the BEMF vector modulo. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	smo_bemf_m	READ	0	BEMF vector modulo

smo_angle- position evaluation rotor electric angle

Read only UNSIGNED32 register. It represents the rotor electric angle (flux vector). The value 2^{32} corresponds to 360 degrees.

	BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
(031	smo_angle	READ	0	Rotor electric angle (2 ³²)

Pos_position – low resolution position rotor electric angle

Read only SIGNED32 register. The range is $-2^{31}..2^{31}-1$. The value 2^{16} corresponds to 360 degrees. The range rounds is $-2^{15}..2^{15}-1$. The value represents the current rotor electric angle according the selected rotor control come.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	pos_position	READ	0	Rotor electric angle (2 ¹⁶)

slp_spdset- speed setpoint for speed loop control

Read/Write SIGNED32 register. Refer to **spd_speed** register for unit definition.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	slp_spedset	R/W	0	Speed setpoint

The speed setpoint is used in speed loop when **spd2trq**=1 to feed the current loop. The speed loop is also used to feed the position loop when **spd4pos**=1.

Product Specification

slp_kmpro- speed proportional error gain for speed loop control

Read/Write IEEE-754 32-bits FLOAT register. The proportional gain is slp_kmpro / 2 P_SLP_PRO_DLN2.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	slp_kmpro	R/W	0	Proportional error gain

slp_kmint - speed integrative error gain for speed loop control

Read/Write IEEE-754 32-bits FLOAT register. The integrative gain is slp_kmint / 2 C_SLP_INT_DLN2.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	slp_kmint	R/W	0	integrative error gain

slp_outlim - speed output current limit

Read/Write UNSIGNED17 register. The values is the current limit for speed control loop.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	slp_outlim	R/W	0	Current limit

slp_kmultx, slp_kmulty- speed output current multiplier

Read/Write SIGNED18 registers. The values is a K / 2¹⁶ multiplier for X/Y current output setpoint.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	slp_kmultx slp_kmulty	R/W	0	Current X/Y control.

The effective gain are usually evaluated by:

slp kmultx = cos(angle) * 216

 $slp\ kmulty = sin(angle) * 2^{16}$

The angle value for maximum torque is $\pi/2$.

Paipol - motor pair poles

This register setup the number of motor pair poles.

ВІТ	NAME	ACCESS	RESET VALUE	DESCRIPTION
-----	------	--------	----------------	-------------

Product Specification

831		READ	0	Unused/reserved
07	paipol	R/W	0	Motor pair poles in range 1255

The number of pair poles ("pair-poles" = "poles / 2") is used on several sub functional IP. Set the proper value in range "1..n" according motor characteristics.

IMPORTANT: do not set value "0" (zero).

ext_angle - External sensors angle

This read only register contains the real time angle generated by external sensors IP. The angle resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	ext_angle	READ	0	Angle value

rsv_angofs - Resolver sensors angle offset

This register set the angle offset to correct alignment between resolver sensor and motor flux.. The angle resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	rsv_angofs	R/W	0	Angle value

rsv_angle - Resolver sensors angle

This read only register contains the real time angle generated by resolver sensors IP. The angle resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	rsv_angle	READ	0	Angle value

hls_ctolim - Hall sensors coasting mode counter timeout limit

This r/w register contains the clock timeout for coasting mode used to control the angle interpolator. The value is system clock units.

Example: with system clock @ 100 mHz, the maximum value 2²⁰-1 is about 10.5 msec.

Product Specification

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
2031		READ	0	Unassigned/reserved
019	hls_ctolim	R/W	0	Timeout value

hls_angle - Hall sensors angle

This read only register contains the real time angle generated by hall sensors IP. The angle resolution is 2^{32} =360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	hls_angle	READ	0	Angle value

enc_index - Encoder index register

It counts the index rising edges pulses or motor revolutions. This register is unipolar (unsigned) and is incremented regardless of rotation direction (forward or reverse).

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_index	READ	0	Rounds counter

enc_phase - Encoder phase register

It counts the sensor phases. This register is bipolar (signed). The counter is incremented in forward direction and decremented in reverse direction. The counter counts four phases for each encoder pulse. If the register size is less than 32 bits then the most significant bits are at fixed value of "0" (no signed extend function is applied).

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc phase	READ	0	Phases counter

Enc_phcpt - Encoder phase hold

The register hold Enc_phase on rising edge of encode index. The first sampled value corresponds to index position at power on, all others values are: initial_offset + revolutions * phases_per_revolutions.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_phcpt	READ	0	Phases counter.

enc_cyprnd - Encoder cycles per round

This UNSIGNED12 register is used to set the pulses (or cycles) per round for the given encoder. An encoder pulse correspond to 4 phases. The value limit is 4095 pulses or 16380 phases.

Product Specification

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1231		READ	0	Unassigned/reserved
011	enc_cpyrnd	R/W	0	Angle increment per phase.

enc_angphs - Encoder angle increment

This register is used to set the angle increment for each phase transition. For a given encoder of 256 pulses per round we have 256 x 4 = 1024 phases per mechanical round. If the motor have 2 pair poles (2=electric rounds for each mechanical round), the electric rotor phases per rounds are 1024 / 2 = 512. The angle resolution is $2^{32} = 360$ degrees, so the register shall be set to $2^{32} / 512 = 8388608$.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_angphs	R/W	0	Angle increment per phase.

Enc_angle - Encoder angle

This read only register contains the real time angle generated by encoder IP. The angle resolution is 2^{32} =360 degrees. The H/W reset or IP user reset can be used to force load of enc_angdef value.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	enc_angle	READ	Enc_angdef	Angle value

Mrt_speed - scalar mode rotor speed setpoint

This register is used to set the angle increment for each internal time base event.

Example:

IP cycle time = $3.2 \mu S$,

Motor Pair Poles = 2,

Desired speed = 1000 RPM = 16.667 RPS (round per seconds)Rotor Electric speed = 16.667 RPS * 2 pair poles = 33.333 Hz (flux speed is electric rotor speed)

Enc_mrtspeed = $33.333 \text{ Hz} / 3.2^{-6} = 10,416,667$

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mrt_speed	R/W	0	Speed set point

The *mrt_speed* is used directly when C_MANROT = 1,

If C_MANROT = 2 the maximum acceleration is applicable and a double LPF1 filter is used to smooth the effective speed.

Product Specification

Mrt_accmax - scalar mode rotor acceleration limit

This register is used to control the speed ramp from current speed to target speed.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
030	mrt_accmax	R/W	0	Acceleration limit

The value is application with $C_MANROT = 2$.

Mrt_fktau1/mrt_fktau2 - scalar mode rotor double LPF1filters

The value is an UNSIGNED17 that sets up the first LPF1 used to smooth the speed setpoint in scalar mode rotor control. Refer to the specific IP document for a detailed description.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	mrt_fktau1 mrt_fktau2	R/W	0	LFP1 filter coefficient for speed value

Mrt_spdout - scalar mode rotor speed value

This read only register report the speed value after double LPF filter.

ВІТ	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mrt_spdout	READ	0	Speed value

Mrt_angle - scalar mode rotor angle

This read only register contains the real time angle generated by encoder emulator IP. The angle resolution is 2^{32} =360 degrees. The H/W reset or IP user reset can be used to force load of *enc_angle* value.

The encoder emulator IP input default value is internally connected to encoder IP angle output for a cascade operation. The encoder emulator is in reset=inhibit state, the encoder angle output pass through the encoder emulator.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mrt_angle	READ	Enc_angle	Angle value

Product Specification

Pi_setvalx, pi_setvaly - PI setpoint value

These registers are a SINGNED18 bit values used to setup the desired X/Y currents. The value is compared with current feedback to evaluate the Vs vector. The bit resolution depends on h/w implementation.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	pi_setvalx pi_setvaly	R/W	0	Current setpoint

Pi_kmpro - PI proportional error multiplier

The register is a proportional error multiplier for error gain.

The effective value is $pi_kmpro / 2^{C_PI_ERPRO_DIVLN2}$.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	kmpro_x kmpro_y	R/W	0	Proportional error multiplier

Pi_kmint - PI integrativ error multiplier

The register is a integrative error multiplier for error gain.

The effective value is $pi_kmint / 2^{C_pI_kmint} / 2^{C_pI_kmint}$.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pi_kmint	R/W	0	Integrator error multiplier

Mod2angskw - second modulator angle skew

In double independent 3-phases windings of BLDC/PMSM motor, this register shall be programmed with angle offset of 2nd winding.

The angle resolution is 2³²=360 degrees.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	mod2angskew	R/W	0	Angle value

Product Specification

QD TDS 115 07 July 01, 2018

Pwm_kmod - PWM modulation multiplier

The register is a multiplier applied to Vs voltage modulator for scale correction (PWM frequency and DC_link compensation).

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	pwm_kmod	R/W	0	Pwm argument multiplier

Pwm_presc - PWM prescaler

Two PWM prescaler UNSIGNED17 bit register is used to set the PWM frequency. The PWM wave generator runs at main clock frequency.

The value width is 17 bits for a range in $0...2^{17}$ -1.

The PWM frequency is obtained by this formula: $pwm_presc = sysclock / pwm_freq / 2 - 1$ Example for system clock of 50 MHz and desired pwm_freq of 20 KHz;

Pwm presc = 50 MHz / 20 KHz / 2 - 1 = 1249.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pwm_presc	R/W	0	PWM prescaler value: range is 02 ¹⁷ -1

Pwm_mdmax - PWM modulation limit

This register is used to limit the modulation duty cycle to desired value. The bit resolution is the same of pwm presc.

The PWM modulator compares the PWM modulation value with the pwm_mdmax limit. In case of overflow the pwm mdovf bit of motor status register is set.

It is highly recommended to set this register at a proper value in order to protect the gate power stage against too long high side driver time ON.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pwm_mdmax	R/W	0	PWM modulation limit value: range is 0 2 ¹⁷ -1

Pwm_mdval - PWM modulation value

This read only register report the real time modulation value. The value is in range 0...pwm_mdmax with pwm_presc = 100%.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1731		READ	0	Unassigned/reserved
016	pwm_mdval	READ	0	PWM modulation limit value: range is 0 2 ¹⁷ -1

Pwm_ctrl - PWM control register

This register selects various option of PWM modulaor.

Product Specification

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
331		READ	0	Unassigned/reserved
2	cmmofs	R/W	0	3-Phase common mode offset
01	table	R/W	0	PWM modulation table selector

Rpfm3p_ctrl - PFM control register

This register controls the PFM parameters setup.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
1431		READ	0	Unassigned/reserved
13	rpfm3p_v7h	R/W	0	Null vector 7 hold mode: 0=vector 7 fall to vector 0 1=vector 7 hold for reduced switches
12	rpfm3p_v07n	R/W	0	Null vector 0/7 transition mode: 0=vector 0 1=vector 0 or 7 is selected for reduced switches
811	rpfm3p_mdpr	R/W	0	RPFM modulator prescaler 015
07	rpfm3p_mdkd	R/W	0	RPMF modulator clock divider 0255

Vector 0/7 nice (v07n)	Vector 7 hold (v7h)	Vector 0/7 modes
0	Х	Vector 7 disable
1	0	Vector 7 only one shot
1	1	Symmetric mode

The modulator pulse width is defined by system clock divider. clock_divider = (rpfm3p_mdkd + 1) * (rpfm3p_mdpr + 1)

Example:

IP core activation time = 3.2 μ S, System clock = 62.5 MHz, Desired modulation pulse with = 6.4 μ S, Rpfm3p_mdkd = 24 rprm3p_mdpr = 15

Refer to RPFM specific IP datasheet for details and limitations.

Product Specification

deadtval - Gate unit dead time value

This register can be used to set value for gate unit dead time.

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
831		READ	0	Unassigned/reserved
07	deadtval	R/W	255	Value for gate unit dead time

The value is not used in motor control IP. The signal is delivered to gate unit IP as-is.

gwswcnt - Gate unit switches counter

This register can be used to report the gate unit switches

BIT	NAME	ACCESS	RESET VALUE	DESCRIPTION
031	gwswcnt	0	-	Value from gate unit

The value is not used in motor control IP. The signal is reported from gate unit.

hls_dprangle[0...15] - hall sensor DPR angles

This set of 16 registers is used by the hall sensor IP to evaluate the motor electric angle. Look to specific IP description.

ВІТ	NAME	ACCESS	RESET VALUE	DESCRIPTION
1831		READ	0	Unassigned/reserved
017	Hls_dpsangle[015]	R/W	0	18 bits SIGNED value

pwm_waveform[0...1023] - PWM waveform DPR

A set of four PWM waveform tables are defined using a single Xilinx BRAM 1024x18 primitive.

The DPR can be accessed in R/W modes from host side and READ only from PWM IP side.

The four tables are addressed by vector index range:

Table 0: 0...255
Table 1: 256...511
Table 2: 512...767
Table 2: 768...1023

Product Specification

TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from ZYNQ 7-family of FPGAs. The following tables lists the devices used for characterization using default IP parameters.

Device Utilization Summary (estimated values)			
Logic Utilization	ZYNQ		
Number of LUT	7355		
Number of FF	7645		
Number of BRAM	4		
Number of LUTRAM	32		
Number of DSP	24		

Execution time

Start event	End of execution	clock cycles ¹	Time @ 50 MHz	Time @ 100 MHz
Curr_sync	Pwm(2-phases)	188	3.76 μS	1.88 μS
Curr_sync	Pwm(3-phases)	201	4.04 μS	2.01 μS
Curr_sync	RPFM(3-phases)	172	3.44 μS	1.72 μS

 $^{^{\}scriptsize 1}$ Unless otherwise noted.

Product Specification

Reference Documents

n/a

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

Revision History

Date	Version	Description	
16/09/2011	1.0	QDeSys first release.	
19/11/2011	1.1	Added some registers. Modified Devices Utilization table. Removed pwm dmod	
		register.	
23/12/2011	1.2	Correct execution time table. Update for new PI_control IP	
23/03/2012	1.3	Updated registers	
12/05/2012	1.4	Added Kintex 7 and Zynq support	
11/07/2013	1.5	Position and speed loop control. BEMF feed	
42/05/2044	4.6	forward compensation. Register map review.	
13/05/2014	1.6	Hall sensor IP, double 3-phase modulator,	
/		enhanced feature for MRT IP.	
14/02/2015	1.7	RPFM 3-levels modulator, Resolver sensor IP,	
		extra trigger in current acquisition, direct	
		access to dc_link and currents.	
19/05/2016	1.8	Inclusion of analog preprocessing IP for	
		offset, filtering and zero offset. Extend	
		interface to motor board specific IP for	
		diagnostic and probes.	
6-Jan-17	1.9	Update speed loop, update current loop,	
		remove bemf compensation	
March 21, 2017	1.10	Remove acquisition feature. Optimized PI-	
		cotnrol	
August 6, 2017	1.11	Added PI current control probes, resolver ip	
		update	
20-Dec-17	1.12	Motor status register modification and PWM	
		control register added.	
June 1, 2018	1.13	Update interface for MRT acceleration	
		scaling	

Product Specification

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION