

Product Specification

FUNCTION

Field Orientation Control (FOC)

VHDL File

motorfoc.vhd

Applicable Devices

Spartan3ADSP, Spartan6, 7-Family, UltraScale+

Xilinx primitives used

DSP48A/A1/E1 RAMB16_S18_S18

Sub modules used

encdig3w.vhd resolver.vhd hallsnsp.vhd manrot.vhd clarke.vhd rectopol.vhd park.vhd pi_control.vhd pwmmod.vhd rpfm3phxlm.vhd

Execution time

177 to 206 clocks

Introduction

This IP Core implements the main field orientation control (FOC) module. Basically it is a container for other specialized IP Cores.

The module uses the following main functions:

- encoder signal interface
- hall sensor interface
- resolver interface
- Clarke transformation
- Park and Inverse Park transformation
- Proportional Integral (PI) control for current loop
- Cartesian to polar transformation
- BEMF feed forward compensation
- Pulse Width Modulation (PWM)
- Regenerative Pulse Frequency Modulation (RPFM) 2/3 level
- Very fast speed loop and position loop regulators.

Detailed Description

Figure 1 shows the main scheme of the FOC implemented in the IP Core. This FOC implements a current control accepting as reference inputs setval x (direct current component) and setval y (quadrature current component). Two stator currents ia and ib are supplied to this FOC and converted from a rotating 3-phase system into a rotating two-phase coordinate system described by the variables curr_x and curr_y via the Clark transform. The two currents curr_x and curr_y are then forwarded to a Park's transform that using the rotor's angle rot_angle maps them into a fixed frame curr rot x and curr rot y. In steady state conditions curr rot x and curr rot y are constant. The setval_x reference controls rotor magnetizing flux; the setval_y reference controls the output torque of the motor. The difference between curr_rot_y and setval_y defines the torque error. The difference between curr_rot_x and setval_x defines the rotor magnetizing flux error. The errors are fed into a PI (proportional integral) controller that transform the current error into a voltage error vsmod rot x and vsmod rot y. An inverse Park transform is applied to vsmod rot x and vsmod rot y mapping them from a fixed frame into a rotating frame vsmod x and vsmod y. Rectangular to polar conversion is then applied to vsmod_x and vsmod_y to obtain vsangval and vamodval, representing the module and angle of the stator voltage. At this level the BEMF feed forward compensation is applied by adding a value to Vs modulo. This function is driven by Vs speed evaluation modude. The module and angle are fed into the power modulation unit, PWM or RPFM that provide sinusoidal or space vector modulation using pulse width modulation (PWM) or pulse frequency / pulse density modulation (RPFM) to the motor.

The FOC uses an incremental rotary encoder to capture the rotors angle position.

Figure 1

Sub modules description

pos_eval_inst

This module is an instance of *possImeval* for the sliding mode observer (SMO) position estimation. The module analyzes the supplied voltage vector and the measured current vector to evaluate the BEMF vector and then the rotor electrical angle.

speed_eval_inst

This module is an instance of *speedeval*. The module evaluates the rotor electrical angle speed. The output is required by the position estimator.

hls_inst

This module is an instance of *hallsnsp* for hall sensor interface. The module interface a double set of 3 hall sensors to decode up to 12 angle positions. A s/w programmable DPR is used to set the angle for each hall sensor position. Independent forward/backward direction angle compensation register is implemented. A s/w interpolator is used to evaluate intermediate angle between two consecutive hall sensor positions.

enc_inst

This module is an instance of *encoder3r* and executes two basic functions:

- It decodes the signals from an incremental encoder. The phase channel CH-A and CH-B are mandatory. The index channel to indicate complete revolution is optional.
- It calculates the electrical angle of the rotor. To calculate the electrical angle the module uses the counting of the encoder phases, a parameter that is the delta of angle for each phase and the timing signal **curr_sync** to interpolate the electrical angle between two phase change.

The outputs of the module are an input for the manrot instance.

mrot_inst

This module is an instance of *manrot* and it is used to emulate the encoder function. In this module an integrator, synchronized with **curr_sync**, increments a parameter that represents the electrical angle. The module can be used in place of other rotor position evaluation (encoder, hall sensor, sensorless etc..). The basic implementation consist of speed integrator. The full implementation includes a speed ramp limitation and a double LPF1 filter.

clarke_inst

This module is an instance of *clarke* and it transforms a three-phase currents systems into a two phase orthogonal system. If a stepper motor is controlled, the Clarke transformation is not necessary and it is disabled using the *enfun* input signal. In this case the input is copied to the output without modifications. If a three-phase motor is controlled the Clarke transformation is enabled. The outputs of this module are inputs for **park_dir_inst** (the Park transformation).

rectopol_inst

This instance of *rectopol* converts the rectangular coordinates pairs (X, Y) to the polar coordinates (modulo, angle). This instance is used to evaluate Is vector (module, angle) from Is currents (X, Y)

and also to evaluate Vs vector (modulo, angle) for modulator. The instance is shared to save FPGA resources.

park_inst

This is an instance of *park*. The park module implements both park_direct and park_inverse transforming. The park_direct is used to convert Is vector <u>from stator</u> reference <u>to rotor</u> reference. The park_inverse is used to convert the Vs vector <u>from rotor</u> reference <u>to stator</u> reference. The shared implementation saves FPGA resources.

ctrl_X_inst, ctrl_Y_inst

These are two instances of $pi_control$. Each module implements a PI (Proportional Integral) control and takes as input the set point of the current (setval_x, setval_y) and the calculated current of the motor referred to the rotor (curr_rot_X_i, curr_rot_Y_i). The set point has the same dimension and scale of the curr_rot_X_i (or curr_rot_Y_i).

The output has the dimension of a voltage; the conversion is made by the gain of the PI. The output value is scaled to maximize the dynamic of calculus; the final scaling to get the real voltage to apply to the motor is executed further in the control chain.

The module is highly configurable by the user and it is provided with anti-windup. More information on the *pi_control* module are available in the datasheet QD_TDS_111.

pwm_mod_inst

This is an instance of *pwmmod*. It implements the PWM (Pulse Width Modulation) module. It gets as inputs:

- Supply voltage value (dc_link) of the motor as provided by the power supply acquisition A/D depending on the hardware implementation.
- Polar coordinates of the voltage vector desired. It is [vsangval_i, vsmodval_i].
- Scaling parameters to calculate the correct modulation factor.
- PWM frequency desired.
- Selector for 3-phase motors and bipolar stepper motors.

The module uses the intersecting method between two waveforms to generate the PWM. The reference waveform is user programmable (in the IP core there are two default waveforms), while the other waveform is a triangular wave. The module has 4 tables to store the user defined waveforms. The default functions are a cosine for the sinusoidal modulation and a cosine with overlapped a harmonic to get a zero-sequence-insertion modulation (only for three-phase motors). It is possible to drive both three-phase motors and stepper motors.

rpfm3ph_mod_inst

This module, an instance of *rpfm3phmod*, realizes the PFM (Pulse Frequency Modulation). It gets as inputs:

- Supply voltage value (dc_link) of the motor as provided by the power supply acquisition A/D depending on the hardware implementation.
- Polar coordinates of the voltage vector desired. It is [vsangval_i, vsmodval_i].
- High speed modulator prescaler.

mod_type_sel_proc

This is a process that selects the type of modulation to output (PWM or PFM). It takes in input both the modulation generated by the modules **pwm_mod_inst** and **rpfm3ph_mod_inst** and selects one of this as output. The selection is decided by the user with the signal *modtype_req* and *is3phases*. In Table 1 is reported the meaning of the selection signals.

Signal	Value	Meaning
madtuna	MOD_TYPE_PWM	Select PWM.
modtype_req	MOD_TYPE_RPFM	Select PFM.
is3phases	0	Stepper motor selected. Only PWM is availa- ble.
-	1	Three-phase motor selected.

Table 1: modulation selection table

The signal *modtype_ack* report to the user the modulation selected. In the table below there are the possible values.

input		output
modtype_req	is3phases	modtype_ack
MOD_TYPE_PWM	0	MOD_TYPE_PWM
MOD_TYPE_PWM	1	MOD_TYPE_PWM
MOD_TYPE_RPFM	0	MOD_TYPE_PWM
MOD_TYPE_RPFM	1	MOD_TYPE_RPFM

Table 2: modtype_ack values

The output of this module, *coildrv_i*, is mapped on the output *coildrv* of *motorfoc* and it is the input for the motor drivers.

curr_acq_inst (not shown in Figure 1)

This module acquires the currents Ia, Ib and the rotor angle. The data size is 12 bit.

is_rectopol_inst (see Error! Reference source not found.)

This instance of *rectopol* converts the rectangular coordinates [curr_X_i, curr_Y_i] to the polar coordinates [isangres_i, ismodval_i]. These coordinates represent the angular and radial values of the current vector.

synctrig_proc (see Error! Reference source not found.)

This process detects the zero crossing event of the stator electrical angle elerotang_i.

cptvsis_proc (see Error! Reference source not found.)

The process holds in the signals vsangrotzmc[31:0] and isangrotzmc[31:0] the angle of the stator voltage (V_s) and current (I_s) on the zero crossing of the rotor electrical angle.

isover_proc (see Error! Reference source not found.)

This process checks the module of the I_s current. The value is compared with a reference value set by the host system. If the current is higher than the reference value for 3 times (3 sample in sequence), the signal ismodover is set (value '1').

Control block

The control block consist of a set of sub modules and some controlled switches to feed the pi_control regulators.

The involved modules are:

- Posandspd : position loop and speed loop pi regulator
- Manrot : manual rotor angle generator and speed filtering for scalar control mode
- Pi_control : both regulators for X and Y current components.

Figure 2 - control block diagram

Spd2trq	Mrt2spd	Control mode
0	х	Torque/current
1	0	Speed direct
1	1	Speed with MRT

Figure 3 - control matrix

Rotor angle position

In FOC (field oriented control) algorithm the knowledge of rotor angle value is the main task. In *motorfoc* there are several functional block that can be used to establish the rotor angle value. A software controlled switch is used as selector.

Product Specification

Figure 4 - rotor angle selector

Product Specification

PARAMETERS

Parameter	Туре	Values	Default	Description
C_FAMILY	string	spartan3adsp spartan6 artix7 kintex7 virtex7 zynq	zynq	Xilinx FPGA Family name
	In	verter analog in	puts	
C_INV_IN_MAP[11:0]	Std_logic_v ector	0x0000xFFF	0x083	Bit map enabled input channels: 0=IPHS_A 1=IPHS_B 2=IPHS_C 3=IBUS_X 4=VPHS_A 5=VPHS_A 6=VPHS_C 7=VBUS_X 8=VPHS_N
C_INV_IN_NOT[11:0]	Std_logic_v ector	0x0000xFFF	0x000	Bit map inverted channels. Bit values as per C_INV_IN_MAP
C_INV_OFSV_MODE	Integer	03	1	Offset set mode func- tions bit definition: 0=Self-Zero 1=S/W registers
C_INV_OVER_IPHS	integer	01	1	Overcurrent detection motor phases
C_INV_OVER_IBUS	integer	01	1	Overcurrent detection dc_link
C_INV_FILTER	Integer	01	1	2nd order LPF inputs
C_CLARKE_NPHS	Integer	0,2,3	3	Clarke transform input phases. O=transparent (2- phases only for bipolar stepper motor) 2=2-phases used in 3- phases motor 3=3-phases used in 3- phases motor
C_PWM_MODULATOR	integer	02	1	Include PWM modula- tor IP
C_RPFM_MODULATOR	integer	02	1	Include RPFM modula- tor IP

© 2014-2018 QDeSys, All rights reserved.

S/W for Embedded Systems QD_TDS_114_07 July 01, 2018

ESYS

Product Specification

	integer	01	1	RPFM 3-level exten-
				sion
C RPFM TPNC	integer	01	1	RPFM 3-level T-PNC
	intogor	0.1	1	Variant
C_SMO_EVAL	integer	01	T	Fstimator IP
	integer	01	1	Include Speed Measu-
C_SPD_EVAL	Ŭ			rement IP
C_SPEED_CTRL	Integer	01	1	Include speed loop
C_RESOLVER	integer	01	1	Include resolver sen- sor IP
C_RSV_MINANV	integer	165536	8192	Resolver Minimum In- put Values
C_HALLSENSOR	integer	01	1	Include hall sensor IP
C_ENCODER	Integer	01	2	Include enhanced 23 wire encoder IP
	Integer	02	2	Scalar mode rotor an-
				gle IP: 0=no, 1=angle
C_MANROT				update, 2=enhanced
				with ramp and 2 ^m or-
	Integer	816	16	Base 2 logarithm of
C_MRT_ACCMAX_DLN2	Ũ			MRT acceleration lim-
				iter
	integer	2226	24	Base 2 logarithm of
C_SIVIO_ZS_DLINZ				proportional error di-
	integer	2630	28	Base 2 logarithm di-
C_SMO_F2_DLN2	Ŭ			vider use to eval K of
				2 nd LPF
		-		
	Integer	0n	1	Base 2 logarithm of
				error regulator
	Integer	0.n	5	Base 2 logarithm of
C_SLP_INT_DLN2	Ŭ			speed loop integrative
				error regulator
	Integer	0.n	1	Base 2 logarithm of
C_SLP_INDWP_DLN2				speed loop integrative
				windup
	Integer	0.n	1	Base 2 logarithm of
C_SLP_INDWP_KDIV	Ŭ Ū			speed loop integrative

© 2014-2018 QDeSys, All rights reserved.

Product Specification

				error regulator for anti windup
C_ISOVERFLOW_CMAX	integer	115	1	Current modulo over- flow counter limit
C_PI_ERPRO_DLN2	integer	0n	12	Base 2 logarithm of current loop PI pro- portional error divisor
C_PI_ERINT_DLN2	integer	0n	18	Base 2 logarithm of current loop PI inte- grative error divisor

Important:

The exclusion of components can be used to save FPGA resources. Some components are internally interconnected so the exclusion can inhibit the connected IP components. Refer to the block diagram for details.

Product Specification

SIGNALS

Signal	I/O	Description
clock	IN	Clock (rising edge).
reset	IN	Reset. Active high.
hls_mem_we	IN	Hall Sensor memory write enable. Active high.
hls_mem_addr[3:0]	IN	Hall Sensor memory address.
hls_mem_din[15:0]	IN	Hall Sensor memory data input.
hls_mem_dout[15:0]	OUT	Hall Sensor memory data output.
pwm_wvfm_en	IN	PWM memory enable. Active high.
pwm_wvfm_we	IN	PWM memory write enable. Active high.
pwm_wvfm_addr[9:0]	IN	PWM memory address.
pwm wwfm dip[17:0]	IN	SIGNED18. Input data to write in the selected DPR
pwin_wvinn_din[17.0]		memory address of the PWM.
pwm_wvfm_dout[17:0]	OUT	PWM DPR data output.
tsclocks[11:0]	OUT	System clocks per FOC cyle
zer_iphs_a	IN	Auto Zero for IPHS_A
zer_iphs_b	IN	Auto Zero for IPHS_B
zer_iphs_c	IN	Auto Zero for IPHS_C
zer_ibus_x	IN	Auto Zero for IBUS_X
zer_vphs_a	IN	Auto Zero for VPHS_A
zer_vphs_b	IN	Auto Zero for VPHS_B
zer_vphs_c	IN	Auto Zero for VPHS_C
zer_vbus_x	IN	Auto Zero for VBUS_X
zer_vphs_n	IN	Auto Zero for VPHS_N
xbus_fk1[16:0]	IN	UNSIGNED17. K value for 1 st LPF1 DC_LINK filter
xbus_fk2[16:0]	IN	UNSIGNED17. K value for 2 nd LPF1 DC_LINK filter
xphs_fk1[16:0]	IN	UNSIGNED17. K value for 1 st LPF1 Motor Phases filter
xphs_fk2[16:0]	IN	UNSIGNED17. K value for 2nd LPF1 Motor Phases filter
ibus_limit[16:0]	IN	UNSIGNED17. Dc_link current limit.
iphs_limit[16:0]	IN	UNSIGNED17. Motor phases current limit.
ovi_clear	IN	Remove overcurrent error
SIGNE	D18. RAV	N values from A/D channel
acq_iphs_a[17:0]	IN	IPHS_A
acq_iphs_b[17:0]	IN	IPHS_B

© 2014-2018 QDeSys, All rights reserved.

Product Specification

acg jphs c[17:0]	IN	IPHS C
acg ibus x[17:0]	IN	IBUS X
acg yphs a[17:0]	IN	 VPHS A
acg vphs b[17:0]	IN	VPHS B
acg yphs c[17:0]	IN	VPHS C
acg ybus x[17:0]	IN	VBUS X
acg vphs n[17:0]	IN	VPHS N
	IN	Data input sync
	SIGNED1	8. Input offset values
iof iphs a[17:0]	IN	IPHS A
iof iphs b[17:0]	IN	IPHS B
iof iphs c[17:0]	IN	 IPHS_C
iof ibus x[17:0]	IN	IBUS X
iof vphs a[17:0]	IN	VPHS A
iof vphs b[17:0]	IN	VPHS B
iof vphs c[17:0]	IN	VPHS C
iof vbus x[17:0]	IN	VBUS X
$\frac{101}{100} = \frac{101}{100} = \frac{101}{100}$	IN	VPHS N
SIGNI	ED18. WI	rite Input offset command
wof iphs a	IN	IPHS A
wof iphs b	IN	IPHS B
wof iphs c	IN	IPHS C
wof ibus x	IN	IBUS_X
wof vphs a	IN	VPHS A
wof vphs b	IN	VPHS B
wof vphs c	IN	VPHS C
wof vbus x	IN	VBUS X
wof vphs n	IN	 VPHS_N
		_
S	IGNED18	B. output offset values
oof iphs a[17:0]	OUT	IPHS_A
oof jphs b[17:0]	Ουτ	IPHS B
oof iphs c[17:0]	OUT	IPHS C
oof ibus x[17:0]	OUT	IBUS X
oof vphs a[17:0]	OUT	VPHS A
oof vphs b[17:0]	OUT	VPHS B
oof vphs c[17:0]	OUT	 VPHS_C
oof vbus x[17:0]	OUT	VBUS X
oof vphs n[17:0]		VPHS N

© 2014-2018 QDeSys, All rights reserved.

Product Specification

SIGNED18. Normalized values			
nrm_iphs_a[17:0]	OUT	IPHS_A	
nrm_iphs_b[17:0]	OUT	IPHS_B	
nrm_iphs_c[17:0]	OUT	IPHS_C	
nrm_ibus_x[17:0]	OUT	IBUS_X	
nrm_vphs_a[17:0]	OUT	VPHS_A	
nrm_vphs_b[17:0]	OUT	VPHS_B	
nrm_vphs_c[17:0]	OUT	VPHS_C	
nrm_vbus_x[17:0]	OUT	VBUS_X	
	OUT	VPHS_N	
nrm_sync	OUT	Data sync	
	SIGNED	018. Filtered values	
flt_iphs_a[17:0]	OUT	IPHS_A	
flt iphs b[17:0]	OUT	IPHS_B	
flt_iphs_c[17:0]	OUT	IPHS_C	
flt ibus x[17:0]	OUT	IBUS_X	
flt vphs a[17:0]	OUT	VPHS_A	
flt vphs b[17:0]	OUT	VPHS B	
flt vphs c[17:0]	OUT	 VPHS_C	
flt vbus x[17:0]	OUT	VBUS_X	
flt vphs n[17:0]	OUT	VPHS_N	
flt sync	OUT	Data sync	
	Ov	ercurrent flags	
ovi iphs a	OUT	IPHS_A	
ovi iphs b	OUT	IPHS_B	
ovi iphs c	OUT	IPHS_C	
ovi ibus x	OUT	IBUS X	
		_	
Speed evalue	ation (se	e QD_TDS_118 for more details)	
	IN	UNSIGNED17. K parameter of the first low pass filter	
spd_fktau1[16:0]		for speed eval.	
	IN	UNSIGNED17. K parameter of the second low pass fil-	
spd_tktau2[16:0]		ter for speed eval.	
spd_speed[31:0]	OUT	SIGNED32. Speed evaluated.	
spd_fwdir	OUT	Evaluated Rotor direction 1=forward, 0=reverse	
spd_moving	OUT	Evaluated Rotor status 1=moving, 0=still.	
rot_select[2:0]	IN	Rotor position selector.	
rot_angdef[31:0]	OUT	Rotor position initial angle (preset value).	
rot_angle[31:0]	OUT	UNSIGNED32 rotor angle from mux.	

© 2014-2018 QDeSys, All rights reserved.

fbk_angdef	IN	Initial angle selector. 1=rot_angle, 0=rot_angdef
Position evalu	uation (s	ee QD_TDS_117 for more details)
smo_rstang	IN	Position Eval reset command. 1=reset, 0=operating.
smo_vs_mult[31:0]	IN	UNSIGNED32 Vs multiplier for slide mode function.
smo_is_mult[31:0]	IN	UNSIGNED32 Is multiplier for slide mode function.
smo_zs_max[16:0]	IN	UNSIGNED17 error limit for sliding mode function
	IN	UNSIGNED17. K parameter of the LPFT1 pos eval
Smo_es1_kfit[16:0]		BEMF1.
smo es? kflo[16:0]	IN	UNSIGNED17. K parameter of the LPFT1 pos eval
Sino_esz_kno[10.0]		BEMF2 base value
smo_es2_kfmx[16:0]	IN	UNSIGNED17. K parameter of the LPFT1 pos eval
		BEMF2 speed multipler value
pos es2 kflt[16:0]	OUT	UNSIGNED17. K current value of the LPFT1 pos eval
		BEMF2.
smo_angots[15:0]	IN	SIGNED16. Angle offset compensation.
smo_bemf_x[17:0]	OUT	SIGNED18. Bemf X.
smo_bemf_y[17:0]	OUT	SIGNED18. Bemf Y.
smo_bemf_p[17:0]	OUT	UNSIGNED31. Bemf vector angle.
smo_bemf_m[16:0]	OUT	UNSIGNED17. Bemf vector modulo.
smo_angle[31:0]	OUT	UNSIGNED31. Rotor position angle.
		Position
pos_position[31:0]	OUT	Low resolution position (1/65536)
	S	peed control
slp_spdset[31:0]	IN	Speed set point
slp_kmpro[31:0]	IN	Proportional K gain IEEE-754 Float 32bits
slp_kmint[31:0]	IN	Integrative K gain IEEE-754 Float 32bits
slp_outlim[16:0]	IN	Current limit
slp_kmultx[17:0]	IN	Current – X multiplier (div/65536)
slp_kmulty[17:0]	IN	Current – Y multiplier (div/65536)
	Spe	ed mux control
slp_spd2trq	IN	Speed loop to Torque loop
slp_mrt2spd	IN	MRT to speed loop

© 2014-2018 QDeSys, All rights reserved.

Product Specification

paipol[7:0]	IN	Number of pair poles (1n)
rsv_m2rppk[7:0]	IN	Resolver motor pair poles / resolver pair poles
rsv_angofs[15:0]	IN	Resolver angle offset for alignment
rsv_angle[31:0]	OUT	Resolver angle output
hls_ctolim[19:0]	IN	Hall Sensor Coasting mode or interpolator timeout
hls_angle[31:0]	OUT	UNSIGNED32. Phase electrical counter.
enc_rstang	IN	Encoder reset angle counter.
enc_inten	IN	Encode interpolator enable
enc_xmcha	IN	Encoder index match level for CH-A encoder signal
enc_xmchb	IN	Encoder index match level for CH-B encoder signal
enc_xmchi	IN	Encoder index match level for CH-I encoder signal
enc_cyprnd[11:0]	IN	Encoder cycles per round
and angehe[21:0]	IN	UNSIGNED32. Set the electric angle equivalent to a
enc_angphs[31:0]		step of the encoder data phase.
enc_fwdir	OUT	Encoder forward direction.
enc_phsev	OUT	Encoder phase event.
enc_idxev	OUT	Encoder index event.
enc_errev	OUT	Encoder error.
enc_phcnt[15:0]	OUT	SIGNED16.Encoder phase per round counter.
enc_phase[31:0]	OUT	SIGNED32.Encoder phase counter.
enc_phcpt[31:0]	OUT	SIGNED32.Encoder phase counter at the index event.
enc_angle[31:0]	OUT	UNSIGNED32. Phase electrical counter.
enc_index[31:0]	OUT	UNSIGNED32.Encoder index counter.
mrt_rstang	IN	Manrot reset angle
mrt_speed[31:0]	IN	Manrot speed set value
mrt_accmax[31:0]	IN	Maximum acceleration (ramp limit)
mrt_fktau1[16:0]	INT	UNSIGNED17. K parameter of the first LPFT1 speed
mrt_fktau2[16:0]	INT	UNSIGNED17. K parameter of the second LPFT1 speed
mrt_spdout[31:0]	OUT	Manrot speed output value
mrt_angle[31:0]	OUT	UNSIGNED32. Manrot rotor electrical angle.
ismodmax[16:0]	IN	UNSIGNED17. Module current limit.
ismodover	OUT	Current limit exceeded flag.
icmodual[10:0]	OUT	UNSIGNED17. Current module from the acquisition
ismodvai[16:0]		chain.

© 2014-2018 QDeSys, All rights reserved.

Product Specification

isangval[31:0]	OUT	UNSIGNED32. Current angular value from the acquisi- tion chain.
offint_x	IN	Disable integrative on current control loop.
deafmd_x	IN	Ignore the feedback signal. Active high. If this signal is
setval v[17:0]	IN	SIGNED18 Set point of the regulator
	IN	LINSIGNED17. Proportional gain of the regulator
kmint v[16:0]		UNSIGNED17. Integral gain of the regulator
kiiiiit_x[10.0]	111	
offint v	IN	Disable integrative on current control loop
Offinit_y		Isable integrative on current control loop.
deafmd_y	IIN	asserted the PI regulator works in open loop.
setval_y[17:0]	IN	SIGNED18. Set point of the regulator.
kmpro_y[16:0]	IN	UNSIGNED17. Proportional gain of the regulator.
kmint_y[16:0]	IN	UNSIGNED17. Integral gain of the regulator.
pix_setval[17:0]	OUT	SIGNED18. Current control probe X-set
piy_setval[17:0]	OUT	SIGNED18. Current control probe Y-set
pix_fbkval[17:0]	OUT	SIGNED18. Current control probe X-feedback
piy_fbkval[17:0]	OUT	SIGNED18. Current control probe Y-feedback
pix_outval[17:0]	OUT	SIGNED18. Current control probe X-output
piy_outval[17:0]	OUT	SIGNED18. Current control probe Y-output
vsmodval[16:0]	OUT	UNSIGNED17. Module coordinate of the control volt-
vsangval[31:0]	OUT	UNSIGNED32. Angular coordinate of the control volt- age in a polar system.
	Mo	l dulator common
mod2angskw [31:0]	IN	UNSIGNED32, 2 nd modulator angle skew.
modtype_req[0:0]	IN	Modulator type request 0=PWM, 1=RPFM
		1
pwm_kmod[31:0]	IN	UNSIGNED32. Parameter used in the PWM duty cycle evaluation.
pwm_presc[16:0]	IN	UNSIGNED17. PWM prescaler setting.
pwm_mdmax[16:0]	IN	UNSIGNED17. Max output modulation.
pwm_mdval[16:0]	OUT	UNSIGNED17. PWM modulation value. Range is 0 to pwm_mdmax (prescaler=100%).
pwm table[1:0]	IN	Select one of the 4 waveform stored in the DPRAM.
	IN	Common mode offset
pwm cmmots		

© 2014-2018 QDeSys, All rights reserved.

Product Specification

rnfm2n_mdkd[7:0]	IN	UNSIGNED8. RPFM system clock prescaler for high	
		speed modulator.	
rpfm3p_mdpr[3:0]	IN	UNSIGNED4, RPFM high speed modulator prescaler.	
rpfm3p_v07n	IN	PFM vector 0/7 nice transition.	
rpfm3p_v7h	IN	PFM vector 7 hold.	
rpfm3p_modz[1:0]	OUT	PFM modulation zone.	
ext_angle[31:0]	IN	External sensor for angle position	
rsv_priexc[17:0]	IN	Resolver primary exciter	
rsv_secsin[17:0]	IN	Resolver secondary sine	
rsv_seccos[17:0]	IN	Resolver secondary cosine	
hls_hallsig [5:0]	IN	Hall Sensor interface	
enc_cha	IN	Encoder channel A.	
enc chb	IN	Encoder channel B.	
enc chi	IN	Encoder channel index.	
generator	OUT	0=drive, 1=generator	
modtype[0:0]	OUT	Modulation type acknowledge.	
modlevels[0:0]	IN	0=2-levels, 1=3-levels	
is3phases	IN	Three-phase motor selection flag. Active high ("1").	
·			
pwm2p_l2c1w1[1:0]	OUT	Pwm 2-phases, 2-levels, coil-1, winding-1	
pwm2p_l2c2w1[1:0]	OUT	Pwm 2-phases, 2-levels, coil-2, winding-1	
pwm2p_l2c1w2[1:0]	OUT	Pwm 2-phases, 2-levels, coil-1, winding-2	
pwm2p l2c2w2[1:0]	OUT	Pwm 2-phases, 2-levels, coil-2, winding-2	
pwm2p l2sync	OUT	Pwm 2-phases, 2-levels sync	
· · · · ·			
pwm3p 2cxw1[2:0]	OUT	Pwm 3-phases, 2-levels, coil-321, winding-1	
pwm3p [2cxw2[2:0]	OUT	Pwm 3-phases, 2-levels, coil-321, winding-2	
pwm3p l2sync	OUT	Pwm 3-phases, 2-levels, sync	
rpfm3p 2cxw1[2:0]	OUT	Rpfm 3-phases, 2-levels, coil-321, winding-1	
rpfm3p [2cxw2[2:0]	OUT	Rpfm 3-phases, 2-levels, coil-321, winding-2	
rpfm3p /2svnc	OUT	Rpfm 3-phases, 2-levels, sync	
		- F	
rpfm3p 3c1w1[1:0]	OUT	Rpfm 3-phases, 3-levels, coil-1, winding-1	
rpfm3p_l3c2w1[1:0]	OUT	Rpfm 3-phases, 3-levels. coil-2. winding-1	
rpfm3p_l3c3w1[1:0]	OUT	Rpfm 3-phases, 3-levels, coil-3, winding-1	
rpfm3p_l3c1w2[1:0]	OUT	Rpfm 3-phases, 3-levels, coil-1, winding-2	
rnfm3n 3c2w2[1:0]		Rpfm 3-phases, 3-levels, coil-2, winding-2	
· P9P_1965 W2[1.0]			

© 2014-2018 QDeSys, All rights reserved.

Product Specification

rpfm3p_l3c3w2[1:0]	OUT	Rpfm 3-phases, 3-levels, coil-3, winding-2
rpfm3p_l3sync	OUT	Rpfm 3-phases, 3-levels, sync

Product Specification

TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from ZYNQ 7-family of FPGAs. The following tables lists the devices used for characterization using default IP parameters.

Device Utilization Summary (estimated values)		
Logic Utilization	ZYNQ	
Number of LUT	6666	
Number of FF	6383	
Number of BRAM	4	
Number of DSP	24	

Execution time				
Start event	End of execution	clock cycles ¹	Time @ 50 MHz	Time @ 100 MHz
Curr_sync	Pwm(2-phases)	188	3.76 μS	1.88 µS
Curr_sync	Pwm(3-phases)	201	4.04 μS	2.01 μS
Curr_sync	RPFM(3-phases)	172	3.44 μS	1.72 μS

The FOC execution time is measured from *flt_sync* (filtered current values signal) to end of modulator internal execution.

Due to parallel implementation and dataflow signals propagation, the current sync data rate can be higher than execution time.

The absolute minimum *acq_sync* rate in clocks is 156. Do not drive the *acq_sync* at higher rate. The currents data rate can be 3.12 μ S @ 50 MHz and 1.56 μ S @ 100 MHz .

¹ Unless otherwise noted.

^{© 2014-2018} QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

QD_TDS_114_07 July 01, 2018

Reference Documents

- 1. QD_TDS_101_01 [encoder3r specification, QDeSys 2012]
- 2. QD_TDS_102_01 [manrot specification, QdeSys 2012]
- 3. QD_TDS_103_01 [clarke transform specification, QdeSys 2012]
- 4. QD_TDS_104_01 [park transform specification, QdeSys 2012]
- 5. QD_TDS_105_01 [low pass filter specification, QdeSys 2012]
- 6. QD_TDS_106_01 [PWM module specification, QdeSys 2012]
- 7. QD_TDS_111_01 [PI control specification, QdeSys 2012]
- 8. QD_TDS_112_01 [rectopol specification, QdeSys 2012]
- 9. QD_TDS_116_01 [rpfm specification, QdeSys 2012]
- 10. QD_TDS_117_01 [position estimator, QdeSys 2012]
- 11. QD_TDS_118_01 [speed evaluation, QdeSys 2012]
- 12. QD TSD 119 01 []
- 13.-QD_TDS_120_01 []
- 14. QD_TDS_121_01 [incremental encoder 2/3 channels, QdeSys 2013]
- 15. QD_TDS_122_01 [hall sensor, QdeSys 2014]
- 16. QD_TDS_123_01 [rpfm 3-levels modulator, QdeSys 2015]]
- 17. QD_TDS_124_01 [resolver, QdeSys 2015]

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

Date	Version	Description
26/08/2011	1.0	QdeSys first draft
09/09/2011	1.1	First release
12/09/2011	1.2	Modified footnote 2
11/10/2011	1.3	Added global diagram, updated reference
		documents
18/11/2011	1.4	Position estimator, optimization end general
		review
20/11/2011	1.5	Modified chain execution time and devices uti-
		lization table
23/12/2011	1.6	Corrected execution time table. Update for
		new PI_control IP
23/03/2012	1.7	Update speed evaluation, sliding mode SFOC,
		removed LPF1 on input currents
06/04/2012	1.8	Removed LPF1 from block diagrams
12/05/2012	1.9	Added FOC description; added

Revision History

^{© 2014-2018} QDeSys, All rights reserved.

QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Product Specification

10/07/2013	1.10	BEMF feed forward compensation. Position & speed loop. New 3-wire encoder IP. Scalar loop for sensorless.
13/05/2014	1.11	Hall sensor IP, double 3-phase modulator, en- hanced feature for MRT IP.
14/02/2015	1.12	RPFM 3-levels modulator, Resolver sensor IP, extra trigger in current acquisition, direct ac- cess to dc_link and currents.
20/05/2016	1.13	Inclusion A/D post processing, 3-phases Clarke transform
6-Jan-17	1.14	Update speed loop control, current loop con- trol. Remove BEMF compensation. Update SMO.
March 21, 2017	1.15	Removed acquisition, simplified pi-control
August 6, 2017	1.16	Added PI controller probes, update resolver
20-Dec-17	1.17	Update module signal interface
June 1, 2018	1.18	Update interface for resolver and MRT accel- eration limiter

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION