

**Product Specification** 

# **FUNCTION**

Arctangent2 function

#### **VHDL File**

atan2.vhd

#### **Applicable Devices**

Spartan 3A DSP, Spartan 6, Kintex 7, Zynq

### Xilinx primitive used

DSP48A RAMB16\_S18\_S18

### Sub modules used

dsp48a4m.vhd idivision.vhd bram1k18.vhd

# **Execution time**

43 clocks

# Introduction

The IP calculates the function atan2(y,x), which is defined as the angle between the positive xaxis and the (x,y) point on a Cartesian plane.



Figure 1: α=atan2(y,x)



# **Detailed Description**

This module executes the arctangent function on input arguments. The equivalent function is:

$$resP = \tan^{-1}\left(\frac{argY}{argX}\right)$$

The arguments *argX[17:0]*, *argY[17:0]* are defined as SIGNED18 variable and the range is -131072 to 131071.

The output *resP[19:0]* is defined as UNSIGNED20 and represent the normalized angle. The effective angle in degrees is:

$$\alpha = \frac{resP}{2^{20}} \cdot 360$$

where  $\alpha$  is the angle expressed in degree.

The process begins with the *start* command and the end of the process is notified by the *finish* flag.

In Table 1 there are the values that gets *resP[19:0]* for special values of *argX[17:0]* and *argY[17:0]*.

| argX, argY         | resP   | mathematical theoretical value |  |  |
|--------------------|--------|--------------------------------|--|--|
| 0,0                | 131068 | undefined                      |  |  |
| 0,argY with argY>0 | 262144 | 90°                            |  |  |
| 0,argY with argY<0 | 786432 | 270°                           |  |  |

Table 1: values of resP[19:0] for special cases of argX[17:0] and argY[17:0]



# **Product Specification**

### **PARAMETERS**

| Parameter | Туре   | Values                              | Default      | Description             |
|-----------|--------|-------------------------------------|--------------|-------------------------|
| C_FAMILY  | string | spartan3adsp<br>spartan6<br>kintex7 | spartan3adsp | Xilinx FPGA Family name |

# **SIGNALS**

| Signal     | I/O | Description                                                                                         |
|------------|-----|-----------------------------------------------------------------------------------------------------|
| clock      | IN  | Clock (rising edge).                                                                                |
| reset      | IN  | Reset. Active high.                                                                                 |
| start      | IN  | Start the calculation. The pulse width must be of 1 clock cycle.                                    |
| argX[17:0] | IN  | Input X argument (SIGNED18). The range is -131072 to 131071.                                        |
| argY[17:0] | IN  | Input Y argument (SIGNED18). The range is -131072 to 131071.                                        |
| resP[19:0] | OUT | Result (UNSIGNED20). The angle is: $\alpha = \frac{resP}{2^{20}} \cdot 360$ , where $\alpha$ is the |
| []         |     | atan2(argX, argY) in degrees.                                                                       |
| finish     | OUT | End of the calculation. Active high. The pulse width is of 1 clock cycle.                           |



**Product Specification** 

# TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from the Spartan-3 Generation and Spartan 6 families of FPGAs. The following tables lists the devices used for characterization.

#### **Device Utilization**

| Device Utilization Summary (estimated values) |               |  |  |  |  |  |
|-----------------------------------------------|---------------|--|--|--|--|--|
| Logic Utilization                             | Spartan3A DSP |  |  |  |  |  |
| Number of Slices                              | 203           |  |  |  |  |  |
| Number of Slice Flip Flops                    | 197           |  |  |  |  |  |
| Number of 4 input LUTs                        | 364           |  |  |  |  |  |
| Number of BRAMs                               | 1             |  |  |  |  |  |
| Number of DSP48s                              | 1             |  |  |  |  |  |

| Device Utilization Summary (estimated values) |           |  |  |  |  |  |  |
|-----------------------------------------------|-----------|--|--|--|--|--|--|
| Logic Utilization                             | Spartan 6 |  |  |  |  |  |  |
| Number of Slice Registers                     | 195       |  |  |  |  |  |  |
| Number of Slice LUTs                          | 330       |  |  |  |  |  |  |
| Number of fully used LUT-FF pairs             | 183       |  |  |  |  |  |  |
| Number of Block RAM/FIFO                      | 1         |  |  |  |  |  |  |
| Number of DSP48A1s                            | 1         |  |  |  |  |  |  |

| Device Utilization Summary (estimated values) |          |  |  |  |  |  |  |
|-----------------------------------------------|----------|--|--|--|--|--|--|
| Logic Utilization                             | Kintex 7 |  |  |  |  |  |  |
| Number of Slice Registers                     | 188      |  |  |  |  |  |  |
| Number of Slice LUTs                          | 338      |  |  |  |  |  |  |
| Number of fully used LUT-FF pairs             | 177      |  |  |  |  |  |  |
| Number of Block RAM/FIFO                      | 1        |  |  |  |  |  |  |
| Number of DSP48E1s                            | 1        |  |  |  |  |  |  |

#### **Execution time**

| output | input | clock cycles <sup>1</sup> |
|--------|-------|---------------------------|
| finish | start | 43                        |

<sup>&</sup>lt;sup>1</sup> Unless otherwise noted.

<sup>© 2012</sup> QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.



**Product Specification** 

#### Timing<sup>2</sup>

In the figure below there are the timings relative to a whole start/finish cycle of calculation.

|                |       | 0.000 ns |       |        |        |        |        |         |         |             |        |
|----------------|-------|----------|-------|--------|--------|--------|--------|---------|---------|-------------|--------|
| Name           | Value | 0 ns     | 50 ns | 100 ns | 150 ns | 200 ns | 250 ns | (300 ns | (350 ns | 400 ns      | 450 ns |
| Ug clock       | 0     |          |       |        |        |        |        |         |         |             |        |
| 🍓 start        | 0     |          |       |        |        |        |        |         |         |             |        |
| 🕨 駴 argx[17:0] | 0     |          |       |        |        |        | 45000  |         |         |             |        |
| 🕨 駴 argy[17:0] | 0     |          |       |        |        |        | 39026  |         |         |             |        |
| resp[19:0]     | U     | (        |       |        |        | 0      |        |         |         | XX 669437 X |        |
| 🛺 finish       | U     |          |       |        |        |        |        |         |         |             |        |
|                |       |          |       |        |        |        |        |         |         |             |        |
|                |       |          |       |        |        |        |        |         |         |             |        |

*Figure 2: timings of a whole start/finish cycle* 

The process begins on the rising edge of the clock when the *start* signal is high; all the input signals must be stable when *start* is set high and they must stay stable until the *finish* signal is set high by the process.



Figure 3: timings of **start** and input signals

The *finish* signal is set high for 1 clock cycle when the process terminates and *resP[19:0]* is valid. The *resP[19:0]* signal is valid until the next *start* signal is set high by the user or a *reset* is received by the process.

|                |        |            |        |        |        | 472.25 | i0 ns   |        |        |        |        |
|----------------|--------|------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|
| Name           | Value  | 1400 ns    | 420 ns | 440 ns | 460 ns |        | 1480 ns | 500 ns | 520 ns | 540 ns | 560 ns |
| 🌆 clock        | 0      |            |        |        |        |        |         |        |        |        |        |
| 堤 start        | 0      |            |        |        |        |        |         |        |        |        |        |
| 🕨 式 argx[17:0] | 45000  |            |        | 45000  |        |        |         | K      | 20000  |        |        |
| 🕨 式 argy[17:0] | 39026  |            |        | 39026  |        |        |         | K      | 20000  |        |        |
| # resp[19:0]   | 119223 | 0 (550123) | 669437 |        |        |        |         | 119223 |        |        |        |
| Un finish      | 0      |            |        |        |        |        |         |        |        |        |        |
|                |        |            |        |        |        |        |         |        |        |        |        |
|                |        |            |        |        |        |        |         |        |        |        |        |

Figure 4: timings of *finish* and *resP[19:0]* validity

The *reset* signal, caught anytime on the rising edge of the clock, resets the core and set *resP[19:0]* to 0.

<sup>&</sup>lt;sup>2</sup> The clock period is only chosen with the purpose to draw the waveforms.



#### **Reference Documents**

- 1. Xilinx LogiCORE IP DSP48 Macro V2.1 [DS754 March 1, 2011]
- 2. Xilinx LogiCORE IP Block Memory Generator V6.1 [DS512 March 1, 2011]

# **Support**

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

# **Ordering Information**

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

### **Revision History**

| Date       | Version | Description                      |
|------------|---------|----------------------------------|
| 13/07/2011 | 1.0     | Initial QDeSys release.          |
| 22/12/2011 | 1.2     | Added parameters for FPGA family |
| 12/05/2012 | 1.3     | Added Kintex 7 and Zynq support  |

### Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION