

Product Specification

FUNCTION

Low pass filter (first order).

File

filtiir.vhd

Applicable Devices

Spartan 3A DSP, Spartan 6, Kintex 7, Zynq

Xilinx primitive used

DSP48A

Sub modules used

none

Execution time

4 clock cycles

Introduction

This block realizes a first order low pass filter. The differential equation that implements the low pass filter in the IP core is:

$$Y_j = Y_{j-1} + (X_j - Y_{j-1})K$$

Equation 1

Where:

 Y_j is the output value calculate at the time $j \cdot T_s$ X_j is the input value at the time $j \cdot T_s$ K is a parameter to select the cutoff frequency T_s is the sampling period of the input signal

Detailed Description

The IP core implements a first order low pass filter. The linear difference equation is the one in Equation 1. The Z-transform of the filter is

$$G(z) = \frac{Kz}{z + (K-1)}$$

Equation 2: z-transform of the first order low pass filter implemented

The *fktau[16:0]*UNSIGNED17 argument sets the value of K using the relation

$$K = \frac{fktau[16:0]}{2^{17}}$$

and so K is in the range of $0 \le K \le 1$.

The *inraw*[17:0]SIGNED18 signal represents the input data; referring to Equation 1 it is the X_j term. The *outflt*[17:0]SIGNED18 is the output of the filter; referring to Equation 1 it is the Y_j term.

Filter setup considerations.

For a desired F_c in Hz (-3dB cutoff frequency of the filter) the relation

$$F_c = \frac{1}{2\pi\tau}$$

can be used to calculate the time constant τ of the filter.

$$\tau = \frac{1}{2\pi F_c}$$

Given the sampling time $T_{\mbox{\scriptsize s}}$ we can define

$$T = \frac{1}{\left(e^{\frac{T_s}{\tau}} - 1\right)}$$

and finally

$$K = \frac{1}{(1+T)}$$

Example:

If we want a cutoff frequency of F_c =25KHz with a sampling period of T_s = 3.2 μ sec, then: τ =6.366*10^{-6}, T=1.531 and finally K = 0.395

Product Specification

PARAME	TERS	5		
Parameter	Туре	Values	Default	Description
C_FAMILY	string	spartan3adsp spartan6 kintex7	spartan3adsp	Xilinx FPGA Family name

SIGNALS

Signal	I/O	Description
clock	IN	Clock (rising edge).
reset	IN	Reset. Active high.
start	IN	Start of calculation pulse. The pulse width must be of 1 clock cycle.
Start		Active high.
fktau[16:0]	IN	Set K parameter of the filter. UNSIGNED17
inraw[17:0]	IN	Input data of the filter. SIGNED18.
outflt[17:0]	OUT	Filter data output. SIGNED18.
finish	OUT	End of calculation pulse. The pulse width is of 1 clock. Active high.

Product Specification

TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from the Spartan-3 Generation and Spartan 6 families of FPGAs. The following tables lists the devices used for characterization.

Device Utilization

Device Utilization Summary (estimated values)							
Logic Utilization	Spartan3A DSP						
Number of Slices	25						
Number of Slice Flip Flops	27						
Number of 4 input LUTs	44						
Number of DSP48s	1						

Device Utilization Summary (estimated values)								
Logic Utilization	Spartan 6							
Number of Slice Registers	24							
Number of Slice LUTs	26							
Number of fully used LUT-FF pairs	24							
Number of DSP48A1s	1							

Device Utilization Summary (estimated values)						
Logic Utilization	Kintex 7					
Number of Slice Registers	23					
Number of Slice LUTs	62					
Number of fully used LUT-FF pairs	22					
Number of DSP48E1s	1					

Execution time

output	input	clock cycles ¹
finish	start	4

¹ Unless otherwise noted.

^{© 2012} QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

Timing²

In the figure below there are the timings relative to a whole start/finish cycle of the process.

					6.080000 us	
Name	Value	 βus IIIII	14 us	5 us	us	7 us
Via clock	1					
Va start	o					
🕨 🐝 fktau[16:0]	1000	0	X		1000	
🕨 😽 inraw[17:0]	131071	0			131071	
outflt[17:0]	0		0			
U. finish	0					
65						

Figure 1: timings of a whole start/finish cycle

The process begins on the rising edge of the clock when the *start* signal is set high; the *fktau[16:0]* and *inraw[17:0]* input signals must be stable at this point and they must stay stable until the *finish* signal is set high by the process (see Figure 2).

										9.645L
Name	Value		3 us	14 us	5us	16 us	7 us	8 us	19 us	
Un clock	0									
U start	o									
▶ 🐝 fktau[16:0]	1000		0	<u> </u>			1000			
inraw[17:0]	131061		0	X	13	1071	X		131061	
outflt[17:0]	992			0		X	99	9	99	<u> </u>
🛺 finish	0									
		-								

Figure 2: timings of start and input signals

The *finish* signal is set high for 1 clock cycle when the process terminates and *outflt[17:0]* is valid. The *outflt[17:0]* signal is valid until another *start* signal is set high or a *reset* is received by the process.

										10.5600	IUU us	
Name	Value	6us		7 us		8 us	 9 us		10 us		11 us	¹²
Va clock	1											
Va start	0											
🕨 🔩 fktau[16:0]	1000								1000			
🕨 式 inraw[17:0]	131061	13	1071		_X		1310)61				
autflt[17:0]	1992	0	X		99	9		992 X			1992	
Un finish	0											

Figure 3: timings for **finish** and **outflt[17:0]** signals

The *reset* signal, caught anytime on the rising edge of the clock, resets the core and set *outflt[17:0]* to 0.

² The clock period is only chosen with the purpose to draw the waveforms.

Reference Documents

1. Xilinx LogiCORE IP DSP48 Macro V2.1 [DS754 March 1, 2011]

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

Revision History

Date	Version	Description
15/07/2011	1.0	Initial QDeSys release.
22/12/2011	1.2	Added parameters for FPGA family
12/05/2012	1.3	Added Kintex 7 and Zynq support

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION