

Product Specification

FUNCTION

Position estimator for sensorless motor control.

VHDL File

posslmeval.vhd

Applicable Devices

Spartan 3A DSP, Spartan 6, Kintex 7, Zynq

Xilinx primitive used

DSP48A/A1/E1 RAM16X1D

Sub modules used

dsp4mot.vhd rectopol.vhd ram16xyd4m.vhd

Execution time

128 clocks

Introduction

This module realizes the position estimator for a sensor less motor control. The state observer is realized using a sliding mode control algorithm that estimates the back-EMF vector and then the electrical rotor position.

Product Specification

Detailed Description

The electrical rotor position evaluation in the SFOC (Sensor less Field Oriented Control) is performed using a sliding mode control algorithm. It takes as input the two measured currents of the motor and uses a model of the motor itself to estimate the electrical rotor angle. The current vector estimated is compared with the real measured current vector and the result is used to adjust the motor model algorithm. Below is reported the equation in the continuous time domain used in the motor model.

$$v_s = Ri_s + L\frac{di_s}{dt} + e_s$$

Equation 1: motor model

where:

 v_s is the input voltage vector i_s is the motor current vector e_s is the back EMF vector R is the winding resistance L is the winding inductance

If usevsact=0 the Vs target (vs_set) values is used else the Vs measured (vs_act) is used.

Solving Equation 1 for is in the discrete domain:

$$i_s(n+1) = \left(1 - T_s \frac{R}{L}\right) i_s(n) + \frac{T_s}{L} (v_s(n) - e_s(n))$$

Equation 2: current vector in the discrete domain

where: T_s is the sampling time $i_s(n+1)$ is the current at the $(n+1)^*T_s$ time

The state observer uses the equation below to calculate and compensate the estimated current:

$$i_s(n+1) = \left(1 - T_s \frac{R}{L}\right) i_s(n) + \frac{T_s}{L} (v_s(n) - e_s(n) - z_s)$$

Equation 3: estimated current vector

The back-EMF correction vector used in the sliding mode controller is **z**_s and it is calculated as

$$z_{s} = \frac{vs_mult * (v_{s} - e_{s} - z_{s}) - is_mult * i_{s}}{2^{C_ZS_KDIV_LN2}}$$

Equation 4: back-EMF correction vector

The z_s is limited by zs_max signal to $|z_s| \le zs_max$. The e_s vector is evaluated applying a Low Pass Filter (LPF1) to the z_s vector: $e_s = LPF1(z_s, es1_kflt)$

QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

^{© 2012-2019} QDeSys, All rights reserved.

Product Specification

The **bemf** vector is evaluated applying a LPF1 to the e_s vector: $bemf = LPF1(e_s, es2_kflt)$

The parameter es2_kflt is evaluated dynamically using the equation reported below:

$$es2_kflt = es2_kfmx \cdot \frac{|speed|}{2^{C_F2_kDIV_kn2}} + es2_kflo$$

where: es2_kfmx is a multiplier speed is the evaluated speed value C_F2_KDIV_LN2 is a constant es2_kflo is the value of es2_kflt when speed=0

The *bemf_m* (back-EMF modulo) and *bemf_p* (back-EMF angle) are evaluated by the rec2pol¹ function applied to *bemf_x* and *bemf_y*:

 $bemf_p = atan2(bemf_y, bemf_x)$ $bemf_m = \sqrt{bemf_x^2 + bemf_y^2}$

Equation 5: back-EMF angle and module

where:

bemf_m is the back-EMF module in polar coordinate bemf_p is the back-EMF angle in polar coordinate bemf_x is the back-EMF X component in Cartesian coordinate bemf_y is the back-EMF Y component in Cartesian coordinate

The rotor angle *bemf_p* is corrected using a correction angle *angofs*. The 16-bits are signed extended to 32bit value before sum.

The electrical rotor angle is:

$$angle = bemf_p + angofs$$

Equation 6: estimated electrical rotor angle

where:

angle is the estimated electrical rotor position angle bemf_p is the estimated electrical angle without correction ang_adj is the correction angle calculated using the look-up table

In Figure 1 there is the diagram of the operations executed by the position estimator.

¹ see QD_TDS_112_01 document for more details

^{© 2012-2019} QDeSys, All rights reserved. QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

posslmeval - position estimator

QD_TDS_117_05 Sep 06, 2019

Product Specification

PARAMETERS

Parameter	Туре	Values	Default	Description
	string	spartan3adsp	zynq	Xilinx FPGA Family name
C_FAMILY		spartan6		
		kintex7		
C_ZS_DLN2	integer	2226	24	Base 2 logarithm of proportional error divisor
C_F2_DLN2	integer	2630	28	Base 2 logarithm divider use to eval K of 2 nd LPF

Product Specification

SIGNALS

Signal	I/O	Description	
clock	IN	Clock (rising edge).	
reset	IN	Reset. Active high.	
start	IN	Start calculation. Active high. The pulse width must be of 1 clock cycle.	
angdef[31:0]	IN	Default angle.	
rstang	IN	Reset angle.	
usevsact	IN	Use Vs measured instead of Vs target	
vs_mult[31:0]	IN	UNSIGNED32 Vs multiplier for slide mode function.	
is_mult[31:0]	IN	UNSIGNED32 Is multiplier for slide mode function.	
zs_max[16:0]	IN	UNSIGNED17 Zs clipping value for big-bang correction	
es1_kflt[16:0]	IN	UNSIGNED17. K parameter of the LPFT1 pos eval BEMF1.	
es2_kflo[16:0]	IN	UNSIGNED17. K parameter of the LPFT1 pos eval BEMF2 K @ speed=0	
es2_kfmx[16:0]	IN	UNSIGNED17. Speed to K multiplier to evaluate K of the LPFT1 poseval BEMF2.	
es2_kflt[16:0]	OUT	UNSIGNED17. K parameter of the LPFT1 pos eval BEMF2.	
angofs[15:0]	IN	SIGNED16 angle offset / 65536 for offset compensation	
		22	
speed[31:0]	IN	SIGNED32, speed value; 2 ³² is full round in time unit	
vs_set_x[17:0]	IN	SIGNED18, Vs X component (target value)	
vs_set_y[17:0]	IN	SIGNED18, Vs Y component (target value)	
. [/= 0]			
vs_act_x[17:0]	IN	SIGNED18, Vs X component (measured value)	
vs_act_y[17:0]	IN	SIGNED18, Vs Y component (measured value)	
is_set_x[17:0]	IN	SIGNED18, Is X component (target value)	
is_set_x[17:0]	IN	SIGNED18, IS X component (target value)	
13_3EL_Y[17.0]			
is_act_x[17:0]	IN	SIGNED18, Is X component (measured value)	
is_act_y[17:0]	IN	SIGNED18, Is Y component (measured value)	
bemf_x[17:0]	OUT	SIGNED18. Bemf X.	
bemf_y[17:0]	OUT	SIGNED18. Bemf Y.	

Product Specification

bemf_p[31:0]	OUT	UNSIGNED31. Bemf vector angle.	
bemf_m[16:0]	OUT	UNSIGNED17. Bemf vector modulo.	
angle[31:0]	OUT	UNSIGNED31. Rotor position angle.	
finish	OUT	End of calculation. Active high. The pulse width is of 1 clock cycle.	

Product Specification

TIMING PERFORMANCE AND RESOURCE USAGE

This section provides data on the timing performance and resource utilization of the core. Performance has been obtained on one representative device from the Spartan-3, Spartan 6 and Kintex 7 families of FPGAs. The following tables lists the devices used for characterization.

Device Utilization

Device Utilization Summary (estimated values)		
Logic Utilization	Kintex 7	
Number of Slice Registers	603	
Number of Slice LUTs	883	
Number of fully used LUT-FF pairs	345	
Number of Block RAM/FIFO	1	
Number of DSP48E1s	4	

Execution time

output	input	clock cycles ²	
finish	start	113	

QDESYS, the QDeSys logo, are trademarks of QDeSys. All other trademarks are the property of their respective owners.

² Unless otherwise noted.

^{© 2012-2019} QDeSys, All rights reserved.

Reference Documents

- 1. Xilinx LogiCORE IP DSP48 Macro V2.1 [DS754 March 1, 2011]
- 2. QD_TDS_112_01 [rectopol specification, QDESYS 2012]

Support

QDESYS provides technical support for this LogiCORE product when used as described in the product documentation.

QDESYS cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

Ordering Information

For information on pricing and availability of QDESYS modules and software, please contact info@qdesys.com

Date	Version	Description
14/11/2011	1.0	QDeSys draft.
22/03/2012	1.1	QDeSys release
12/05/2012	1.2	Added position estimator diagram.
5-Jan-17	1.3	Single value for angle offset compensation.
27-Jun-19	1.4	Update with Vs measured
6-Sep-19	1.5	Correct angle offset compensation reference

Revision History

Disclaimer

In disclosing the information contained in this document QDeSys assumes no obligation to correct any errors herein contained, or to advise you of any corrections or updates. QDeSys expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. QDESYS MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL QDESYS BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION